TRICORE ENVIRONMENTAL, LLC

June 16, 2009

VIA USPS PRIORITY MAIL WITH DELIVERY CONFIRMATION

Mr. Brian Bauer Illinois Environmental Protection Agency Bureau of Land #24 Leaking Underground Storage Tank Section 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

RE: LPC No. 0971855024 – Lake County Wauconda/Shivam Energy, Inc. 399 West Liberty Street IEMA Incident Nos. 892744 and 903199 LUST TECHNICAL FILE

Dear Mr. Bauer:

TriCore Environmental, LLC, on behalf of Shivam Energy, Inc., is providing an original and one copy of an Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Amended Corrective Action Plan and Budget for the above referenced Illinois Emergency Management Agency incident numbers.

If you should have any questions concerning this submittal or require additional information, please contact either of the undersigned at (630) 520-9973.

Sincerely,

Marcos I. Czakó, P.G. Project Manager

Shawn Rodeck, P.E. President

cc: Mr. Rajani Patel, Shivam Energy, Inc., 399 W. Liberty St., Wauconda, IL 60084
Ms. Jackie D. Soccorso, Village of Wauconda, 109 W. Bangs St., Wauconda, IL 60084
Ms. Gwen Carey, 363 W. Bangs St., Wauconda, IL 60084

Attachment

1800 WEST HAWTHORNE LANE, SUITE P • WEST CHICAGO, IL • 60185 TELEPHONE: (630) 520-9973 • FACSIMILE: (630) 520-9976 WWW.TRICOREWEB.COM

TRICORE ENVIRONMENTAL, LLC

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY LEAKING UNDERGROUND STORAGE TANK SECTION AMENDED CORRECTIVE ACTION PLAN

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199 LPC No. 0971855024

Prepared for:

Mr. Rajani Patel Shivam Energy, Inc. 399 West Liberty Street Wauconda, Illinois 60084

Prepared by:

TriCore Environmental, LLC 1800 West Hawthorne Lane, Suite P West Chicago, Illinois 60185 Phone: (630) 520-9973 Fax: (630) 520-9976

June 10, 2009

1800 WEST HAWTHORNE LANE, SUITE P • WEST CHICAGO, IL • 60185 TELEPHONE: (630) 520-9973 • FACSIMILE: (630) 520-9976 WWW.TRICOREWEB.COM

TABLE OF CONTENTS

Page
I
1
1
1
2
23
24

LIST OF FIGURES

FIGURE 1	
	Groundwater Flow Direction Map
	Source Dimension Used for the SSL Equations – Soil Leaching
	Proposed DPE System Layout Map
FIGURE 8	Surface/Trench Backfill Details

LIST OF TABLES

TABLE 1	Soil Geochemical and Geotechnical Results
TABLE 2	
TABLE 3	Groundwater Geochemical Results
TABLE 4	Groundwater Analytical Results – Dissolved Metals
TABLE 5	Free Product Recovery Volumes
TABLE 6	Groundwater Elevation and Analytical Results – BTEX and MTBE
TABLE 7	Soil Analytical Results – BTEX and MTBE
TABLE 8	Dual Phase Extraction Pilot Test Results
TABLE 9	Pounds of Total BTEX and MTBE Extracted by the Pilot Test
TABLE 10	Air Bag Analytical Results

LIST OF APPENDICES

A Analytical Laboratory Reports and Certifications – Soi	APPENDIX A.
BSoil Boring Log	APPENDIX B.
C Analytical Laboratory Reports and Certifications - Groundwater	
D Amended Corrective Action Budge	
E Owner/Operator and Licensed Professional Engineer/Geologist Budge	
F Office of the State Fire Marshal Eligibility and Deductible Determination	APPENDIX F
GIn-Situ Chemical Oxidation Calculations	

APPENDIX H...... Hydraulic Gradient and Hydraulic Conductivity Calculations APPENDIX ISSL Printouts - Soil Leaching APPENDIX J...... Remediation System Quotes and Equipment and Technical Specifications APPENDIX K........ Mass Loading Calculations and Radius of Influence Graphs The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/7.17). This form has been approved by the Forms Management Center

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Corrective Action Plan

A. Site Identification

B.

IEMA Incident # (6- or 8-digit): 892744 and 903199 IEPA LPC # (10-	digit): 0971855024
Site Name: Shivam Energy, Inc.	
Site Address (Not a P.O. Box): 399 West Liberty Street	
City: <u>Wauconda</u> County: <u>Lake</u> ZIP of	Code: 60084
Leaking UST Technical File	
Site Information	
1. Will the owner or operator seek reimbursement from the	
Underground Storage Tank Fund?	Yes 🛛 No 🗌
2. If yes, is the budget attached?	Yes 🛛 No 🗌
3. Is this an amended plan?	Yes 🛛 No 🗌
4. Identify the material(s) released: unleaded gasoline	
5. This Corrective Action Plan is submitted pursuant to:	
a. 35III. Adm. Code 731.166	
The material released was:	
-petroleum	
-hazardous substance (see Environmental Protection Act Section 3.215)	
b. 35 III. Adm. Code 732.404	
c. 35 III. Adm. Code 734.335	\boxtimes

C. Proposed Methods of Remediation

1. Soil: A dual phase extraction (DPE) system will be utilized to address the concentrations of the constituents of concern (COCs) above the Tier 2 soil remediation objectives (SROs).

2. Groundwater: <u>A DPE system will be utilized to address the concentrations of the COCs</u> above the Tier 1 groundwater remediation objectives (GROs).

D. Soil and Groundwater Investigation Results (for incidents subject to 35 Ill. Adm. Code 731 only or 732 that were classified using Method One or Two, if not previously provided)

Not applicable.

Provide the following:

- 1. Description of investigation activities performed to define the extents of soil and/or groundwater contamination;
- 2. Analytical results, chain-of-custody forms, and laboratory certifications;
- 3. Tables comparing analytical results to applicable remediation objectives;
- 4. Boring logs;
- 5. Monitoring well logs; and
- 6. Site maps meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440 and showing:
 - a. Soil sample locations;
 - b. Monitoring well locations; and
 - c. Plumes of soil and groundwater contamination.

E. Technical Information – Corrective Action Plan

Provide the following:

1. Executive summary identifying the objectives of the corrective action plan and the technical approach to be utilized to meet such objectives;

In-Situ Chemical Oxidation Investigation Activities

On January 18, 2007 and August 7, 2008, TriCore Environmental, LLC (TriCore) oversaw the installation of five on-site soil borings (SB-33 through SB-37) and two offsite soil borings (SB-39 and SB-40) to a maximum depth of 22 feet below land surface (bls). The soil borings were installed to evaluate in-situ chemical oxidation as a remediation method for the site. The locations of the soil borings are illustrated on Figure 1. Prior to performing SB-39 and SB-40, a permit was obtained from the Wauconda Park District for authorization to perform the soil borings in Osage Park. The soil borings were completed using the following drilling and sampling procedures.

Each boring was drilled and sampled to a maximum depth of 6 feet bls using a stainless steel hand auger to collect soil samples in 1.0-foot depth intervals. A hand auger was utilized to minimize the risk of damage to subsurface structures and utilities. The reduced risk of striking utility lines increases the safety factor for drillers and other on-site personnel.

The borings were then completed with a truck-mounted Geoprobe[®] using direct-push technology to advance the borings. Continuous soil samples were collected at 2.0-foot intervals to the termination depth of each soil boring. The soil samples were collected within a disposable macro-core liner which was placed within a 2.125-inch inside diameter by 4.0-foot long macro-core sampler. To prevent cross contamination between soil borings and sampling intervals, all drilling and sampling equipment was decontaminated prior to each use using a distilled water and Liquinox[®] solution wash, followed by a distilled water rinse.

As soil samples were collected, the geology of the subsurface soil was described. Upon retrieval, a portion of each soil sample was immediately divided for field screening and laboratory analysis. Samples designated for field screening were placed in airtight plastic

bags, allowed to volatilize and equilibrate, and then screened for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID) equipped with a 10.6 electron volt lamp. The PID was field calibrated using isobutylene gas prior to use. The other portion of each sample was placed into laboratory provided containers, labeled accordingly, and packed in a cooler containing ice. The soil sample from each boring collected at the static water table or at the interval directly below the static water table was submitted for total petroleum hydrocarbon gasoline range organics (TPH), chemical oxygen demand (COD), and the Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). The soil samples were shipped under standard chain-of-custody protocol to Pace Analytical Services, Inc. (Pace) in Green Bay, Wisconsin for laboratory analysis using United States Environmental Protection Agency (USEPA) methods. Additionally, one soil sample was collected for total plate count and shipped under standard chain-of-custody protocol to Suburban Laboratories, Inc. in Hillside, Illinois for laboratory analysis.

After soil samples were collected, the borings were backfilled with bentonite and hydrated. The ground surface was restored using material similar to the surrounding ground surface.

Analytical laboratory results are summarized in Tables 1 and 2. Copies of the analytical laboratory reports and certifications are provided in Appendix A. Soil boring logs are provided in Appendix B.

On January 19, 2007 and June 23, 2008, TriCore sampled MW-2, MW-11S, MW-15, MW-18, MW-26, and MP-1 to evaluate in-situ chemical oxidation as a remediation method for the site. The locations of the wells are illustrated on Figure 1. Prior to sampling the wells, the depth to groundwater was measured in each well using an electronic oil/water interface meter equipped with an audible signal. The meter was washed using a distilled water and Simple Green[®] solution wash between each use. Each well was then developed by removing approximately three well volumes using a dedicated, disposable high-density polyethylene (HDPE) bailer. The purge water generated during the sampling activities were contained on site in 55-gallon drums for future disposal. After the wells were allowed to recharge, groundwater samples were collected from each well using the dedicated, disposable HDPE bailer. The samples were collected without headspace in laboratory-provided containers, labeled accordingly, packed in a cooler containing ice, and shipped under standard chain-of-custody protocol to Pace for laboratory analysis. The groundwater samples were submitted for TPH, COD, RCRA metals, total nitrogen, and total phosphorus analyses using USEPA methods.

Analytical laboratory results are summarized in Tables 3 and 4. Copies of the analytical laboratory reports and certifications are provided in Appendix C. Costs associated with the in-situ chemical oxidation evaluation activities performed on June 23 and August 7, 2008 have been included in an Amended Corrective Action Budget provided in Appendix D. These costs have not been included in the budgets previously approved by the Illinois Environmental Protection Agency (IEPA). An Owner/Operator and Licensed Professional Engineer/Geologist Budget Certification Form is provided in Appendix E. A copy of the Office of the State Fire Marshal Eligibility and Deductible Determination is provided in Appendix F.

In-Situ Chemical Oxidation Evaluation

Based on the analytical results from the investigation activities described above, TriCore evaluated the use of in-situ chemical oxidation to address the concentrations of the COCs in the groundwater above the Tier 1 GROs. Since the site is located within the wellhead protection area of the Village of Wauconda community water supply well located in Osage Park, the Tier 1, Class I GROs were utilized as the remediation objectives for the groundwater component of the groundwater ingestion exposure route. Based on these objectives, groundwater treatment areas were determined.

By modifying the total mass of contaminant equation provided in the IEPA Chemical Oxidation Guidance dated September 2008, the mass of contaminants in the saturated soil and the mass of contaminants in the groundwater were calculated independently. For the mass of contaminants in the saturated soil, the dry bulk density of the soil was utilized in the equation instead of the wet bulk density. Similarly, for the mass of contaminants in the groundwater, the total soil porosity and the density of water were utilized in the equation instead of the wet bulk density.

The saturated soil treatment area encompassed the estimated area above the Tier 1 SROs. Utilizing the PID measurements and the depth of the field-interpreted groundwater table during drilling activities, a treatment depth of 8 to 12 feet was estimated. To determine the mass of contamination in the soil, the average COD concentration was used since it was the higher of the average TPH and COD concentrations in the soil. An average COD concentration of 3,400.00 parts per million (ppm) and a surface area of 5,400.91 square feet (ft²) was utilized to determine the mass of contamination in the soil. By using the treatment depth, a total of 800.13 cubic yards (yds³) of soil is estimated to be treated by the oxidation process. Using the modified equation described above, the mass of contaminants in the saturated soil was calculated to be 7,977 pounds (lbs).

The proposed groundwater treatment area encompasses the estimated area above the Tier 1 GROs. Utilizing the maximum seasonal fluctuations in groundwater from all of the wells located within the treatment area, a treatment thickness of 2 feet was estimated. To determine the mass of contaminants in the groundwater, the average groundwater COD concentration was used since it was the higher of the average TPH and COD concentrations in the groundwater. An average COD concentration of 42.53 ppm and a surface area of 94,882.59 ft² was utilized to determine the mass of contamination in the groundwater. By using the treatment depth, a total of 7,028.34 yds³ is estimated to be treated by the oxidation process. Using the modified equation described above, the mass of contaminants in the groundwater treatment area was calculated to be 173 lbs. Therefore, the total mass of contaminants to be treated during the oxidation process is 8,150 lbs.

By estimating that 3 lbs of oxygen are required to remediate one lb of contaminant, it is estimated that approximately 24,451 lbs of oxygen are required to remediate the total mass of contaminants in the saturated soil and groundwater. Based on the chemical specific parameters provided by the manufacturer, Solvay Chemicals, Inc., the volume of chemical to be injected was determined. It is estimated that 176,667 lbs of chemical is required to treat the 8,150 lbs of contaminants within the proposed treatment areas. Based on these calculations, the volume of product required to be applied to the saturated

soil and groundwater within the treatment areas is not feasible. Calculations estimating the volume of product required to be applied to the treatment areas are provided in Appendix G.

Although the analytical laboratory results from SB-41 through SB-44 and SB-47 through SB-49, completed on February 2, 2009, revealed concentrations of the COCs above the Tier 1 SROs, these areas were not included in the calculations provided above. However, based on the concentrations of the COCs within the evaluated area as compared to the concentrations of the COCs from SB-41 through SB-44 and SB-47 through SB-49, the amount of oxygen and chemical required to treat the mass of contaminants within these areas would be greater than calculated above.

Soil Investigation Activities

On December 11, 2007, TriCore completed one on-site soil boring (SB-38) to collect site-specific geochemical parameters for the development of the Tier 2 SROs. The location of the soil boring is illustrated on Figure 1. The soil boring was completed to 4 feet bls with a stainless steel hand auger and soil samples were collected and screened using the methods and materials described above.

Two soil samples were selected for laboratory analysis: one from a depth interval of 2 to 3 feet bls and another from a depth interval of 3 to 4 feet bls. The soil samples were submitted under standard chain-of-custody protocol to Pace for fraction of organic carbon content using American Society for Testing and Materials Method D2974.

After soil samples were collected, the boring was backfilled with the soil cuttings. The surrounding ground surface was then capped with the existing topsoil and grass.

Analytical laboratory results are summarized in Table 1. Copies of the analytical laboratory reports and certification are provided in Appendix A. A soil boring log is provided in Appendix B. Costs associated with the soil investigation activities described above have been included in an Amended Corrective Action Budget provided in Appendix D. These costs have not been included in the budgets previously approved by the IEPA.

Vapor Migration Activities

On December 27, 2008, TriCore received a call from Ms. Gwen Carey, owner of the residential property located directly north of the site along Bangs Street. Ms. Carey indicated that her son, Mr. Scott Carey, who owns the home directly north of her, and Mr. Joe Munson, who owns the home located directly north of Mr. Carey, had gasoline vapors present in their basements.

On December 29, 2008, TriCore met Ms. Carey at her home. Ms. Carey indicated that she did not have any gasoline vapors present in her home. This was due to an operating vacuum blower located on site that is directly connected by subsurface piping to the backfill material surrounding the cleanout for the sanitary sewer line that services her home. The sanitary sewer line cleanout is located east of her home, in her front yard. The vacuum blower contains a dilution valve that was partially open to the ambient air. The vacuum blower was installed in 1991 as part of the corrective action activities associated with Illinois Emergency Management Agency (IEMA) incident numbers 892744 and 903199. The blower has operated periodically from 1991 through March 9, 2006 and continuously since March 9, 2006. TriCore and Ms. Carey then proceeded to Mr. Carey's home. Prior to entering Mr. Carey's home, a hydrocarbon odor was observed emanating up from the grass areas between the two homes. Upon arrival to Mr. Carey's house, the basement was inspected. No gasoline vapors were observed within Mr. Carey's basement; however, the basement was damp and humid. Water staining was also present on the concrete floor of the basement, indicating that the basement was not sealed to the outside. At the time, Mr. Munson's home was not accessible and therefore, his basement was not inspected. Please note that Mr. Carey's and Mr. Munson's homes are not connected to the vacuum blower.

After meeting Ms. Carey and inspecting the homes, TriCore inspected the sump wells (S-1 through S-3) associated with the underground storage tank (UST) system and several of the monitoring wells near the UST system (RW-1 (04'), MP-3, MW-2, MW-6, MW-12S, MW-13, MW-26, and MW-27) by lowering a bailer into each of the wells. The locations of the wells are illustrated on Figure 1. A sheen of weathered free product was present in MW-27. No free product was present in any of the other wells that were inspected.

The sanitary sewer line servicing Ms. Carey's house runs through the backfill material surrounding her basement. The sanitary sewer line runs southeast from Ms. Carey's home and connects to the main that runs along Bangs Street. The sanitary sewer line servicing Mr. Carey's and Mr. Munson's homes were constructed similarly to Ms. Carey's. It is assumed that the vapors associated with the on-site free product migrated into the backfill material surrounding the sanitary sewer line that runs southeast from the remediation building to the sanitary sewer main that runs along Bangs Street. The vapors then migrated north along the main and towards the residential homes through the backfill material surrounding the sanitary sewer lines servicing their homes. Since the dilution valve on the vacuum blower was partially open, the vacuum delivered from the blower was enough to remove the vapors within the backfill material surrounding the sanitary sewer line servicing Ms. Carey's house; however, it did not deliver enough vacuum to remove the vapors surrounding the sanitary sewer lines servicing Mr. Carey's or Mr. Munson's homes. Therefore, on December 30, 2008, TriCore returned to the site and closed the dilution valve on the vacuum blower so that a greater vacuum would be applied to the backfill material surrounding the sanitary sewer lines and main.

On December 31, 2008, TriCore returned to the site to regauge the wells and meet with Mr. Brian Bauer, Project Manager with the IEPA Leaking Underground Storage Tank Section, and Ms. Jackie D. Soccorso, Director of Environmental Quality with the Village of Wauconda. Upon arrival at the site, TriCore gauged S-1 through S-3, MW-2, MW-26, and MW-27 with an electronic oil/water interface meter equipped with an audible signal. The meter was washed using a distilled water and Simple Green[®] solution wash between each use. A combination of new and weathered free product was present in S-1 through S-3 and MW-27. No free product was present in MW-2 or MW-26.

TriCore, Mr. Bauer, and Ms. Soccorso then met with Ms. Carey and inspected her basement. A PID equipped with a 10.6 electron volt lamp was used to screen a floor drain in her basement. A concentration of 0.0 ppm was measured. Mr. Carey's basement was then inspected. The PID was also used to screen a floor drain in his basement and a concentration of 0.0 ppm was measured. No gasoline vapors were present in either home.

On March 9, 2009, Ms. Carey contacted TriCore and indicated that Mr. Carey and Mr. Munson had gasoline vapors present in their homes over the weekend. That morning, TriCore met Ms. Carey at her home and then proceeded to her son's home. Upon arrival to Mr. Carey's home, the basement was inspected. A PID equipped with a 10.6 electron volt lamp was used to screen the basement. A concentration of 2.7 ppm was measured. In addition, the basement was damp and humid. Water was present on the floor of the basement in several locations. At the time, Mr. Munson's home was not accessible and therefore, the basement was not inspected. TriCore then screened the storm sewer manholes and inlets located along Bangs Street with the PID. A concentration of 0.0 ppm was measured in all of the manholes and inlets that were screened.

On March 12, 2009, Mr. Munson contacted TriCore and indicated that gasoline vapors were present in his home.

On March 13, 2009, TriCore exposed the sanitary sewer line that runs southeast from the remediation building to the sanitary sewer main that runs along Bangs Street to determine if the line was a migratory pathway for the gasoline vapors. The location of the sanitary sewer line is illustrated on Figure 1.

R.W. Collins of Chicago, Illinois was contracted to trench perpendicular to the sanitary sewer line and expose the line. Prior to trenching, a private utility locator, Lucky Locators, Inc. of Algonquin, Illinois, was contracted to locate the sanitary sewer line. Once the line was located, TriCore then proceeded with the trenching activities. All of the soil that was removed during the trenching was stockpiled on visqueen until the trench needed to be backfilled. After the grass and topsoil were removed, clay was encountered to a depth of approximately 5 feet bls. Underlying the clay was sand. The sanitary sewer line was located approximately 4.5 feet bls just above the top of the sand layer. The backfill material surrounding the 6-inch line was typical to the native sand layer below it; therefore, it was determined not to be a migratory pathway for the gasoline vapors. After the line was exposed, the trench on the south side of the sewer line was excavated deeper and a recovery well, RW-2, was installed south of the sewer line within the trench. The recovery well was installed at a depth of 8 feet bls and was constructed out of 4-inch inside diameter, Schedule 40 polyvinyl chloride (PVC) casing, 4-inch diameter, 0.010-inch slot Schedule 40 PVC screen, a 4-inch PVC end cap, and a 4-inch well plug. The well was constructed so that the screened portion of the well was located within the sand layer. The area surrounding the well was then backfilled with bentonite while the remaining portion of the trench was backfilled with the clay that was excavated.

On March 30, 2009, Ms. Carey contacted TriCore indicating that Mr. Carey had gasoline vapors present in his home.

On April 1, 2009, TriCore and Concept Plumbing, Inc. (Concept Plumbing) of Palatine, Illinois inspected Mr. Carey's basement. The basement was screened with a PID equipped with a 10.6 electron volt lamp. A PID concentration of 0.0 ppm was measured. Upon further inspection of the basement, a dry toilet was found. Concept Plumbing verified that the basement floor drain had a u-trap. If vapors migrate through the sanitary sewer line along Bangs Street and towards Mr. Carey's home, the dry toilet would be a point of entry for the vapors to enter the home. Mr. Carey was advised to keep water in the toilet so that vapors do not migrate into his home through this point of entry. After inspecting Mr. Carey's basement, TriCore and Concept Plumbing met with Mr. Munson and inspected his home. In Mr. Munson's basement, there is a floor opening in which a vertical drop pipe from the 1st floor connects to the horizontal sewer line exiting to the Bangs Street sewer main from beneath the basement floor. There is no seal around the drop pipe and the floor opening. Like Mr. Carey's home, if vapors migrate through the sanitary sewer line along Bangs Street and towards Mr. Munson's home, the open sanitary sewer line and floor opening would be a point of entry for the vapors to enter the home. Mr. Munson was advised to seal the floor opening around the drop pipe with concrete so that vapors do not migrate into his home through this point of entry.

Copies of the waste manifests for the free product and groundwater that were recovered on December 31, 2008 through April 1, 2009 were provided in Appendix A of the Free Product Removal Plan (FPRP) dated April 6, 2009. Costs associated with the vapor migration activities described above have been included in the Amended Corrective Action Budget provided in Appendix D. Please note that the costs for the free product and groundwater recovery events described above are not included in the budget since these costs were included in the aforementioned FPRP.

Free Product Removal Activities

On December 31, 2008, TriCore contracted North Branch Environmental (North Branch) of Roselle, Illinois to remove the free product present in S-1 through S-3 and MW-27. North Branch removed a total of 15 gallons of free product and 2,485 gallons of groundwater from the wells utilizing a vacuum truck. The free product and groundwater that were removed were transported off-site by North Branch for treatment and disposal at their facility.

On January 9 and 27, March 9 and 13, and April 1, 2009, TriCore contracted North Branch to perform free product recovery events at the site. During these events, North Branch recovered a total of 59 gallons of free product and 11,841 gallons of groundwater from S-1 through S-3 and MW-27. On February 26, 2009, TriCore recovered approximately 0.01 gallons of free product and 3.99 gallons of groundwater from S-1 through S-3 and MW-27 using disposable, dedicated HDPE bailers. The free product and groundwater recovered on this date were contained on site in a 55-gallon drum. Please note that the volume of free product and groundwater recovered on January 9 and April 1, 2009 included approximately 150 gallons of purged free product and groundwater that were contained on site in 55-gallon drums that were generated during the groundwater sampling activities performed on January 5 and 6, 2009 and the free product recovery activities are provided below. Free product recovery volumes are summarized in Table 5.

On May 15, 2009, in accordance with the aforementioned FPRP, TriCore installed SB-51/MW-29 through SB-57/MW-35 and RW-3. As described in the aforementioned FPRP, a 4-inch diameter well was installed within SB-55/MW-33 through SB-57/MW-35 since the wells will be utilized as recovery wells for the proposed DPE system. These wells will be referred to as RW-4 through RW-6 throughout the remainder of this report. The locations of the wells are illustrated on Figure 1. Further details regarding the well installation activities will be provided in a FPRP. Costs associated with the free product removal activities described above have not been included in the Amended Corrective Action Budget provided in Appendix D since these costs were included in the aforementioned FPRP.

Groundwater Sampling Activities

On January 5 and 6, 2009, TriCore sampled all of the existing wells, except for MW-2, MW-4, MW-9S, MW-24, MW-25, MW-27, RW-1 ('04), and MP-2 through MP-4, to assess the concentrations of the COCs in the groundwater. Monitoring wells MW-2, MW-4, and MW-9S could not be sampled due to obstructions within the wells. Monitoring wells MW-24 and MW-25 were not accessible due to piles of snow and ice that were covering the wells. Monitoring well MW-27 was not sampled due to the presence of free product in the well. Wells RW-1 ('04) and MP-2 through MP-4 were not sampled since they are located adjacent to MP-1. The locations of the wells are illustrated on Figure 1.

Prior to sampling the wells, the depth to free product and/or groundwater was measured in each well using an electronic oil/water interface meter equipped with an audible signal. The meter was washed using a distilled water and Simple Green[®] solution wash between each use. If free product was present in the well, it was removed using a dedicated disposable HDPE bailer. If no free product was present in the well, it was developed by removing approximately three well volumes using a dedicated, disposable HDPE bailer. The free product and purge water generated during the sampling activities were contained on site in 55-gallon drums. After the wells were allowed to recharge, groundwater samples were collected from each well using the dedicated, disposable HDPE bailer. If free product was present in a well, it was not sampled during this event. The samples were collected without headspace in laboratory-provided 40-milliliter glass vials containing hydrochloric acid as a preservative, labeled accordingly, packed in a cooler containing ice, and shipped under standard chain-of-custody protocol to Pace for laboratory analysis. The groundwater samples were submitted for benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) analysis using USEPA Method 8021.

Analytical laboratory results revealed benzene concentrations above the Tier 1 GROs in MW-15, MW-16, MW-26, MP-1, and RW-1. Analytical laboratory results are summarized in Table 6 and illustrated on Figure 2. The groundwater flow direction is illustrated on Figure 3. Copies of the analytical laboratory reports and certification were provided in Appendix B of the Stage 2 Site Investigation Plan (SIP) dated April 14, 2009, prepared for IEMA incident number 903199. Costs associated with the groundwater sampling activities described above have been included in the Amended Corrective Action Budget provided in Appendix D. These costs have not been included in the budgets previously submitted to the IEPA.

a. The major components (e.g., treatment, containment, removal) of the corrective action plan;

DPE System

To recover the free product present at the site, to prevent further migration of vapors, and to remediate the concentrations of the COCs in the soil and groundwater to the

applicable remediation objectives, a DPE system is being proposed.

Groundwater Evaluation

As stated in the IEPA letter dated May 16, 2008, since the benzene concentrations above the Tier 1 SROs observed in B-4c and B-5b are below the shallow groundwater table that exists in Osage Park, these concentrations should be addressed through the installation of monitoring wells and treated as a groundwater issue. Therefore, one groundwater monitoring well (SB-67/MW-33) will be installed at the location of B-4c and one groundwater monitoring well (SB-68/MW-34) will be installed at the location of B-5b. The locations of the proposed wells are illustrated on Figure 1. Prior to performing these wells, a permit from the Wauconda Park District will need to be obtained for authorization to install the wells in Osage Park.

The borings will be completed and sampled using the methods, materials, and equipment described above. The soil sample collected above the field interpreted water table exhibiting the highest PID measurement will be shipped under standard chain-of-custody protocol to an Illinois Environmental Laboratory Accreditation Program (IL ELAP) approved laboratory for BTEX and MTBE analysis using USEPA methods.

After soil samples are collected, a groundwater monitoring well will be installed within each boring. The groundwater monitoring wells will be installed with a track-mounted Geoprobe[®] using hollow-stem augers. To prevent cross contamination during the installation of the wells, all drilling equipment will be decontaminated prior to each use. Each well will be constructed out of 2-inch inside diameter Schedule 40 PVC casing, 2-inch inside diameter, 0.010 slot Schedule 40 PVC screen, a 2-inch PVC end cap, a 2-inch well plug, and a stick-up well cover. The stick-up well covers are being used so that proper well seals can be obtained due to the shallow groundwater table in this area of Osage Park. The annulus of each well will be filled with washed silica sand to approximately 1 foot above the top of the well screen. Bentonite pellets will be added followed by bentonite chips to approximately 6 inches below the top of each well casing. The bentonite pellets and chips will be hydrated to provide a seal to prevent potential surface water from migrating into the well through the sand pack. A stick-up well vault with a bolt-down cover will be installed to protect each well.

Approximately one week after their installation, TriCore will gauge, develop, and sample all of the existing wells using the methods and materials described above. The groundwater samples will be shipped under standard chain-of-custody protocol to an IL ELAP approved laboratory for BTEX and MTBE analysis using USEPA methods. In addition, the top-of-casing elevation of MW-33 and MW-34 will be surveyed in reference to another well so that the groundwater elevations and flow direction can be determined. The analytical laboratory results from this sampling event will also be used as the baseline sampling event for the DPE system to evaluate the COC concentration changes with time due to natural and system induced reductions. If analytical laboratory results reveal concentrations of the COCs above the Tier 1 GROs, then remediation of these COCs in this area will be addressed in an Amended Corrective Action Plan (CAP).

b. The scope of the problems to be addressed by the proposed corrective action; and

DPE System

According to the IEPA Source Water Assessment Protection (SWAP) online database, the Village of Wauconda community water supply well located north of the site in Osage Park has a wellhead protection area of 1,000 feet; therefore, the site is located within the wellhead protection area of the community water supply well. Since the site is located within a wellhead protection area, concentrations of the COCs in the groundwater must be remediated to the Tier 1, Class I GROs. Additionally, concentrations of the COCs in the soil must be remediated to the Tier 2 SROs. Further details regarding the Tier 2 SROs are provided below in Section E. 2. Based on the zones where the concentrations of the COCs above the Tier 2 SROs are located, the depth to groundwater, and the lithologies beneath the site, DPE is a viable remediation method that will address the concentrations of the COCs above the remediation objectives. Additionally, the DPE system will recover the free product present at the site and prevent further vapor migration.

Groundwater Evaluation

Since the concentrations of the COCs above the Tier 1 SROs in the soil samples collected from B-4c and B-5b are below the groundwater table, by installing groundwater monitoring wells at these locations, it would evaluate the concentrations of the COCs in the groundwater at these locations. Further details regarding the groundwater evaluation activities were provided above in Section E. 1. a.

c. a schedule for implementation and completion of the plan;

The following is a proposed schedule for the implementation and completion of this plan once it has been approved by the IEPA.

Activity	Projected Completion Time
Obtain an access permit with the Wauconda Park District for Osage Park	Weeks 1 and 2
Obtain groundwater and air discharge permits from the IEPA, and groundwater discharge and building permits from the Village of Wauconda	Weeks 1 through 4
Coordinate and install SB-67/MW-33 and SB-68/MW-34 in Osage Park, and RW-7 through RW-10	Weeks 3 and 4
Trenching, groundwater discharge connection, and piping installation	Weeks 5 and 6
Coordinate and place order with electric company for the power drop	Weeks 5 and 6
Baseline groundwater sampling	Week 6
Place order for the permanent DPE system	Week 6
Temporary DPE system and generator installation	Weeks 7 and 8
Temporary DPE system start up	Week 8
Temporary DPE system operation and maintenance	Weeks 8 through 34
Quarterly groundwater sampling	Weeks 21 through 33
Installation of power drop	Week 32
Permanent DPE system installation	Weeks 33 and 34
Permanent DPE system startup	Week 34

Permanent DPE system operation and maintenance	Weeks 34 through 112
Quarterly groundwater sampling	Weeks 45 through 111
System shutdown (as long as Tier 1, Class I GROs are met)	Week 112
Soil and groundwater attenuation sampling	Week 138

2. Identification of the remediation objectives proposed for the site;

Soil Remediation Objectives

Since the site is located within the wellhead protection area of the Village of Wauconda community water supply well located in Osage Park, Tier 2 evaluations were performed for the COCs above the Tier 1 SROs. The Tier 2 evaluations were performed to evaluate the maximum BTEX and MTBE concentrations that could remain on site that would result in groundwater concentrations equal to the Tier 1, Class I GROs at that location. If the concentrations of the COCs are above the Tier 2 SROs, they will be remediated utilizing DPE.

The Tier 2 SROs were calculated using soil screening level Equations S17 through S22, and S25, located in 35 Illinois Administrative Code (IAC) Part 742, Appendix C, Table A. Default parameters listed in 35 IAC Section 742, Appendix C, Tables B, E, and K, and site-specific parameters were used in these evaluations. Since the site meets the criteria of Class I groundwater, Class I GROs were utilized within the equations to calculate the Tier 2 SROs. The site-specific input parameters are summarized in the table below.

Site-Specific Input Parameters	Value	Units
Dry Soil Bulk Density (Table 1)	1.74	g/cm ³
Soil Particle Density (Specific Gravity) (Table 1)	2.65	g/cm ³
Total Soil Porosity (Table 1)	0.344	L _{pore} /L _{soil}
Organic Carbon Content (subsurface soils below 1 meter) (Table 1)	0.0078	g/g
Hydraulic Conductivity (k)		
Estimated from the data collected by Bradburne, Briller, and Johnson,	2,084.53	m/yr
LLC from MW-6 during a slug test conducted on September 24, 1997	(6.61×10^{-3})	(cm/sec)
(Appendix H).		
Hydraulic Gradient (i)		
Derived based on the measured groundwater elevations collected	0.0157	cm/cm
during the monitoring activities conducted on January 5 and 6, 2009		
(Appendix H).		
Source Length/Width Parallel to Groundwater Flow Direction in the		
Horizontal Plane (Figure 4)		
Measured from the northern curb of West Liberty Street to B-1	5,090.16	cm

The Tier 2 SROs for the SCGIER are summarized in the table below.

COC above the Tier 1	Maximum Detected Concentration	Tier 2 SROs for the SCGIER
SROs	(mg/kg)	(mg/kg)
Benzene	104 (SB-44 @ 6 to 8 feet bls)	0.064
Toluene	1,000 (SB-44 @ 6 to 8 feet bls)	31.939
Ethylbenzene	294 (SB-44 @ 6 to 8 feet bls)	42.061
Total Xylenes	1,530 (SB-44 @ 6 to 8 feet bls)	440.507
MTBE	30.1 (SB-44 @ 6 to 8 feet bls)	0.374

Based on the calculations above, any BTEX and MTBE concentrations above these Tier 2 SROs would result in concentrations of the COCs in the groundwater above the Tier 1, Class I GROs at that location. Since soil concentrations above these Tier 2 SROs are

within the wellhead protection area of the community water supply well, they would have to be addressed. Printouts for these evaluations are provided in Appendix I. Analytical laboratory results are summarized in Table 7 and illustrated on Figures 5A and 5B.

Groundwater Remediation Objectives

As mentioned above in Section C. 2., since the site is located within the wellhead protection area of the Village of Wauconda community water supply well located in Osage Park, Tier 1, Class I GROs are being proposed for the site.

3. A description of the remedial technologies selected:

a. The feasibility of implementing the remedial technologies;

Based on the proposed locations of the recovery wells, the piping trenches, and the remediation building, there are no site features inhibiting the installation and operation of the DPE system.

b. Whether the remedial technologies will perform satisfactorily and reliably until the remediation objectives are achieved; and

The DPE technology is a very reliable means to remediate the site since the equipment is easy to access for any necessary repairs. Periodic operation and maintenance (O&M) events will ensure that the DPE system is performing satisfactorily and reliably.

c. A schedule of when the technologies are expected to achieve the applicable remediation objectives;

It is estimated that a minimum of 24 months will be required to remediate the concentrations of the COCs in the soil and groundwater to the applicable remediation objectives. Although a pilot test was performed on RW-1 ('04) on May 12, 2005, TPH concentrations in the air bag sample collected during the test would not be representative of the TPH concentrations being removed from the recovery wells. Evidence of this is present in the analytical laboratory results from MP-1 through MP-3 and RW-1 ('04), which were installed in 2005, as compared to the analytical laboratory results from SB-41, SB-44, and SB-49, which were installed in 2009. Therefore, estimated rates of removal will be determined once the permanent DPE system has been started. This information will be used to evaluate the time required to remediate the concentrations of the COCs to the applicable remediation objectives. This information will be provided to the IEPA in a semi-annual Remediation Status Report. Analytical laboratory results from the soil samples collected are summarized in Table 7.

As mentioned below in Section E. 4., groundwater samples will be collected from all of the existing monitoring wells quarterly during the operation of the DPE system. Then, all of the existing monitoring wells, RW-1 through RW-6, RW-1 ('04), and proposed recovery wells RW-7 through RW-10 will be sampled for two quarters after the system has been shut down. Additionally, six months after the system has been shut down, soil samples will be collected from the locations which previously exhibited soil concentrations above the Tier 2 SROs. Analytical laboratory results and reports will be provided in semi-annual Remediation Status Reports and/or an Amended CAP.

4. A confirmation sampling plan that describes how the effectiveness of the corrective action activities will be monitored during their implementation and after their completion;

Groundwater Quality Monitoring

Prior to placing the DPE system on-line, groundwater samples will be collected from all of the existing monitoring wells, RW-1 through RW-6, RW-1 ('04), and proposed recovery wells RW-7 through RW-10. During the operation of the DPE system, groundwater samples will be collected from all of the existing monitoring wells on a quarterly basis as described above in Section E. 3. c. Prior to sampling the wells, the depth to free product and/or groundwater will measured in each well using the methods and materials described above.

The samples will be collected using the methods and materials described above in Section E. 1. The samples will be submitted to an IL ELAP approved laboratory for BTEX and MTBE analysis using USEPA methods. The results will be used as a baseline to evaluate the COC concentration changes with time due to natural and system induced reductions.

Quarterly groundwater monitoring will be conducted until groundwater concentrations remain below the Tier 1, Class I GROs for two quarters after the system has been shut down. TriCore will request permission from the IEPA to shut the system down after groundwater concentrations are below the Tier 1, Class I GROs. The system may be restarted if groundwater concentrations exceed the Tier 1, Class I GROs in any of the wells during future groundwater monitoring events.

Soil Quality Monitoring

Six months after the system has been shut down, soil samples will be collected from the locations which previously exhibited soil concentrations above the Tier 2 SROs (CB-11, CB-12, MP-3, SB-41, SB-43, SB-44, SB-48, and SB-49). The system may be restarted and additional extraction wells added if soil concentrations remain above the Tier 2 SROs.

Costs associated with the groundwater and soil quality monitoring activities described above are provided in the Amended Corrective Action Budget provided in Appendix E.

5. A description of the current and projected future uses of the site;

The site is currently an operating gasoline retail station consisting of a single story convenience store building with no basement or crawl space, three dispenser islands with a canopy, two 10,000-gallon steel unleaded gasoline underground storage tanks, and a storage shed. At the time this report was written, the owner plans to continue to operate the site as a gasoline retail station.

6. A description of engineered barriers or institutional controls that will be relied upon to achieve remediation objectives:

Since DPE will be utilized to remediate the concentrations of the COCs in the soil and groundwater to levels below the applicable remediation objectives, no engineered barriers

or institutional controls will be relied upon to achieve the remediation objectives.

- a. an assessment of their long-term reliability;
- b. operating and maintenance plans; and
- c. maps showing area covered by barriers and institutional controls;
- 7. The water supply well survey:
 - a. Map(s) showing locations of community water supply wells and other potable wells and the setback zone for each well;

According to the information provided by the IEPA SWAP database and the Illinois State Geological Survey (ISGS) online database, the closest potable water supply well is located approximately 365 feet north of the site in Osage Park. The well is an active community water supply well for the Village of Wauconda and has a minimum setback zone of 200 feet. According to the ISGS driller's log, the well was installed in 1957 and has a depth of 325 feet. Additionally, according to the IEPA SWAP Fact Sheet for the Village of Wauconda, the well is installed within bedrock that is overlain by relatively impermeable silty or clayey till.

On May 6, 2004, TriCore performed an area reconnaissance to locate the community water supply well. The well is located in the northwest corner of Osage Park. The location of the well is illustrated on Figures 1 through 5. Copies of the water supply well information obtained from the IEPA SWAP database and the ISGS online database were provided in Appendix G of the aforementioned Stage 2 SIP.

b. Map(s) showing regulated recharge areas and wellhead protection areas;

According to the IEPA SWAP online database, the community water supply well located north of the site in Osage Park has a wellhead protection area of 1,000 feet; therefore, the site is located within a wellhead protection area of a potable water supply well. No regulated recharge areas are located within 2,500 feet of the site. A map showing the location of the site in relation to the wellhead protection area was provided in Appendix G of the aforementioned Stage 2 SIP.

c. Map(s) showing the current extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives;

A map showing the current extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives is illustrated on Figure 2.

d. Map(s) showing the modeled extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives;

The modeled extent of groundwater contamination exceeding the most stringent Tier 1 GROs has not been determined at this time. This information will be provided in an Amended CAP.

e. Tables listing the setback zone for each community water supply well and other potable water supply wells;

As mentioned above in Section E. 7. a., the Village of Wauconda community water supply well located north of the site has a minimum setback zone of 200 feet.

f. A narrative identifying each entity contacted to identify potable water supply wells, the name and title of each person contacted, and any field observations associated with any wells identified; and

The following personnel or websites were consulted regarding the locations of potable water supply wells within 2,500 feet of the site.

- 1. IEPA SWAP database
- 2. Janet Christer, Freedom of Information Act Coordinator, Bureau of Water, IEPA
- 3. ISGS online database

As mentioned above in Section E. a. 7., on May 6, 2004, TriCore verified the location of the Village of Wauconda community water supply well located 365 feet north of the site in Osage Park.

g. A certification from a Licensed Professional Engineer or Licensed Professional Geologist that the survey was conducted in accordance with the requirements and that documentation submitted includes information obtained as a result of the survey (certification of this plan satisfies this requirement);

A certification from a Licensed Professional Engineer is provided in Section G. below.

8. Appendices:

a. References and data sources report that are organized; and

The following is a list of references that were utilized to complete this report.

- 1. Amended CAP dated July 31, 2004, prepared by TriCore
- 2. Revised Corrective Action Budget dated September 28, 2004, prepared by TriCore
- 3. Amended CAP dated July 12, 2006, prepared by TriCore
- 4. Amended CAP dated January 17, 2008, prepared by TriCore
- 5. IEPA SWAP database
- 6. ISGS online database

b. Field logs, well logs, and reports of laboratory analyses;

Copies of the analytical laboratory reports for the soil samples collected on January 18, 2007 through August 7, 2008 are provided in Appendix A. Soil boring logs for the borings completed on these dates are provided in Appendix B. Copies of the analytical laboratory reports for the groundwater samples collected on January 19, 2007 and June 23, 2008 are provided in Appendix C. Field logs, well logs, and copies of analytical laboratory reports for the other investigation activities completed at this site were provided in the reports previously submitted to the IEPA.

9. Site map(s) meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440;

Site maps meeting the requirements of 35 IAC 734.440 are illustrated on Figures 1 through 5.

10. Engineering design specifications, diagrams, schematics, calculations, manufacturer's specifications, etc.;

The design and placement of the DPE system focuses on the areas of the site that contain free product and COC concentrations in the soil and/or groundwater above the applicable remediation objectives. In addition, it focuses on the areas of the site where vapor migration has been present. The free product present in MW-27 and S-1 through S-3 have created vapors that have migrated along the sanitary sewer main in Bangs Street and into three residential homes located north of the site. The system will use existing recovery wells RW-1 through RW-6, RW-1 ('04), and proposed recovery wells RW-7 through RW-10 as extraction points. The proposed locations of RW-7 through RW-10 are illustrated on Figure 6.

Proposed recovery wells RW-7 through RW-10 will be installed and soil samples collected using the methods and materials described above in Section D. 1. The soil sample from RW-7, RW-9, and RW-10 collected above the field-interpreted water table exhibiting the highest PID measurement will be shipped under standard chain-of-custody protocol to an IL ELAP approved laboratory for BTEX and MTBE analysis using USEPA methods. No soil samples will be submitted for laboratory analysis from RW-8 since the well will be located adjacent to SB-49, which was completed on February 2, 2009. A 4-inch inside diameter recovery well will then be installed in each boring. The placement of the recovery wells was based on the calculated radius of influence (ROI) of 13 feet that was observed during the pilot test performed on May 12, 2005. Further details regarding the pilot test are provided below in Section E. 11. Proper recovery well placement will ensure recovery of the existing free product, as well as efficient SVE removal rate and zone of influence of the groundwater extraction component in order to address the vapor migration, and the soil and groundwater concentrations above the applicable remediation objectives.

The DPE system will be enclosed within a remediation building equipped with a heater, exhaust fan, thermostats, and interior lighting. The system will extract liquids and vapors from each well through the use of a drop tube inserted into each well. DPE well details are illustrated on Figure 7. The extracted liquids and vapors will be transported from the wells to the building through underground piping by a rotary claw vacuum pump system, which will create a vacuum in the extraction wells. The piping will be installed within a trench which will be completed prior to the system installation. Trench details are illustrated on Figure 8. The extracted materials will then enter a knock-out tank which will be equipped with level sensors. The air will be drawn out of the knock-out tank by the vacuum pump. A portion of the air will be discharged into the atmosphere. The vapor phase carbon unit will remove the VOCs and the treated air will be discharged to the atmosphere. The vapor phase carbon unit will be operated until off-gas concentrations are within the permitted levels, at which time 100 percent of the extracted air will be discharged into the atmosphere.

The liquids collected in the knock-out tank will be transferred to an oil/water separator (OWS) by a transfer pump. The free product will be gravity drained from the OWS to a 55-gallon product recovery drum equipped with float switches. Water will travel by gravity from the OWS to a 60-gallon holding tank. The tank will be equipped with level

sensors that will operate a transfer pump that will transfer water from the holding tank to an air stripper where it will be treated. The treated water will then be discharged from the air stripper into the Village of Wauconda sanitary sewer.

Prior to constructing and operating the DPE system, TriCore will obtain an air discharge and water pollution control permits from the IEPA. In addition, TriCore will obtain building and water discharge permits from the Village of Wauconda.

Monthly compliance samples will be collected from the treated groundwater and analyzed for BTEX and MTBE to ensure that the water discharging into the Village of Wauconda sanitary sewer has been properly treated and meets the objectives outlined in the IEPA Bureau of Water and Village of Wauconda discharge permits. A total of 24 compliance sampling events will be performed during the operation of the system. An air sample will also be collected from the vacuum pump effluent on a quarterly basis so that the mass of VOCs removed can be calculated. Calculating the mass of VOCs removed on a quarterly basis will assist in evaluating when the effluent air concentrations will be within the permitted levels so that operation of the vapor phase carbon unit will no longer be required.

In addition to the compliance-sampling schedule, the following O&M schedule will also be followed after the system has been started: three days during the first week, two days during the second week, one day per week during the third and fourth weeks, and once every two weeks during the remainder of the system operation.

At this time, the system is scheduled to operate for a period of two years. Based on this operating period, a total of 57 O&M days will be required. During a typical O&M day, a technician will perform the following activities: inspect the system and recovery well components, collect vacuum readings from the system, monitor vacuum readings at the recovery wells, gauge monitoring wells, and collect influent and effluent groundwater discharge samples and effluent air samples. System component cleaning will be performed on a periodic or as needed basis. Below is a detailed breakdown of the O&M costs over a two-year period.

Personnel

Senior Technician for O&M: 8 hours/day for 57 days at \$70.88/hour = \$32,321.28

Senior Technician for cleaning and repairs: 100 hours at \$70.88/hour = \$7,088.00

Equipment

Truck: 57 days at 95.00/day = 5,415.00

PID: 57 days at \$75.00/day = \$4,275.00

Oil/Water interface meter: 57 days at \$35.00/day = \$1,995.00

Materials

Nitrile gloves for O&M: 8 pairs/day for 57 days at \$0.50/pair = \$228.00

Distilled water: 1 gallon/day for 57 days at \$2.00/gallon = \$114.00

Nitrile gloves for compliance sampling: 2 pairs/event for 24 events at \$0.50/pair = \$24.00

Ice for compliance sampling: 1 bag/event for 24 events at 2.00/bag = 48.00

Vacuum pump bearing grease: 1 grease gun at \$20.00/gun = \$20.00

Analytical

Compliance influent groundwater sample for BTEX and MTBE analysis: 1 sample/event for 24 events at \$88.33/sample = \$2,119.92

Compliance effluent groundwater sample for BTEX and MTBE analysis: 1 sample/event for 24 events at \$88.33/sample = \$2,119.92

Effluent air sample for BTEX, MTBE, and TPH: 1 sample/quarter for 2 years at \$75.00/sample = \$600.00

Compliance sample overnight shipment: 16 events at \$54.52/event = \$872.32

(The compliance samples for eight of these events will be shipped with the groundwater samples collected from the quarterly sampling events; therefore, they are not included in these costs.)

<u>Utilities</u>

Electric Power Drop: \$5,000.00

Electric: 24 months at \$800.00/month = \$19,200.00

Phone: 24 months at \$50.00/month = \$1,200.00

Total O&M costs = \$82,640.44

Approximate O&M costs/month = \$3,443.35

Since it will take approximately 6 months after the trenching and piping have been installed before the permanent DPE system procurement is completed and subsequently installed and ready for startup, TriCore is proposing to operate a temporary DPE system during that 6 month period. The temporary DPE system will focus strictly on the areas where free product is present and vapor migration is suspected. The temporary DPE system will utilize RW-2 through RW-6 as extraction points.

A map showing the layout of the remediation building and the recovery wells is illustrated on Figure 6. Recovery well and trench details are illustrated on Figures 7 and 8. Equipment and technical specifications provided by the manufacturer are provided in Appendix J. TriCore will be renting the temporary DPE system and purchasing the permanent DPE system. Quotes for the rental of the temporary system and purchase of the permanent system are also provided in Appendix J.

Once the permanent DPE system reaches the end of the remediation project, the equipment will be salvaged. Based on a conversation with a used remediation equipment vendor, the estimated salvage value of the equipment is approximately five percent of the purchase price; therefore, an average salvage value of the system is approximately \$4,825.00. Costs associated with the installation and operation of the DPE systems are included in the Amended Corrective Action Budget provided in Appendix D.

Unsaturated Zone Design

- Total Area of Contamination = $10,017 \text{ ft}^2$
- Radius of Capture at the site = 20 ft per recovery point at 18.50 acfm each

- Required Removal Rate = 169.34 acfm
- Required Points for SVE Recovery = 10 recovery points; however, an additional recovery point has been proposed to address the vapor migration.

The unsaturated zone design calculations are provided in Appendix K.

Mass Loading

Unsaturated Zone Mass of Contamination = 2,704.9 lbs of VOCs

Saturated Zone Mass of Contamination = 1,971.40 lbs of VOCs

The mass loading calculations are provided in Appendix K. The mass of contamination calculated for the saturated zone does not account of the free product present at the site.

Mass Removal Rates

As mentioned above in Section E. 3. c., mass removal rates will be determined once the permanent DPE system has been started. This information will be provided to the IEPA in a semi-annual Remediation Status Report.

11. A description of bench/pilot studies;

The initial step in the remediation process was to perform a DPE pilot test. The pilot test was performed to determine the applicability of DPE as an effective remediation method for the site. Additionally, the pilot test data was used to determine system design requirements such as the effective ROI, vacuum and flow rate requirements for the system components, estimated friction losses, and layout of the trenching and piping.

As mentioned above in Section E. 10., On May 12, 2005, a pilot test was performed utilizing RW-1 ('04) as the extraction well. Prior to the start of the test, the initial background vacuum and depth to water measurements were collected from the wells to be monitored (MW-4, MW-27, and MP-1 through MP-4). Readings collected during the test included well vacuum, air flow rate, and effluent air concentrations using a PID. An air bag sample was collected prior to the end of the pilot test.

The DPE pilot test was conducted for approximately 3.15 hours. Vacuum response levels were measured at the monitoring points that are located at various distances from RW-1 ('04). Monitoring revealed a maximum vacuum response of 3.05 inches of water in monitoring point MP-2, which is located 12 feet from RW-1 ('04). The maximum distance at which a vacuum response was observed was at MW-27 which is located 63 feet from RW-1. A vacuum response of 0.05 inches of water was observed in the well. The vacuum response levels at the specific distances were used to calculate an effective ROI based on 1.0 percent of the vacuum at RW-1. An effective vacuum ROI was estimated at 13 feet. The pilot test results also showed groundwater drawdown at the surrounding monitoring points and wells. The groundwater conditions would be exposed to the SVE component of the system during operation.

The maximum air flow was measured at 18.5 cubic feet per minute. The maximum VOC concentration in the air based on the PID measurements was 6.5 parts per million. During the pilot test, groundwater was removed from the extraction well using a vacuum truck to increase the amount of unsaturated soil exposed to the vacuum created by the

blower. The groundwater extraction rate during the pilot test was approximately 1.35 gallons per minute.

The remediation system design utilized readings and data from the pilot test, to select the number of extraction wells, proper well placement, and piping requirements. The presence of free product and vapor migration was also utilized to determine well placement.

Results from the DPE pilot test are summarized in Tables 8 and 9. Analytical laboratory results from the air bag sample are summarized in Table 10. Estimated ROI graphs for the vacuum influence and the groundwater elevation changes are provided in Appendix K. A copy of the analytical laboratory report from the air bag sample was provided in Appendix B of the Amended CAP dated July 12, 2006.

12. Cost comparison between proposed method of remediation and other methods of remediation;

A cost comparison between DPE and other methods of remediation was not performed due to the limited methods of remediation available for this site to address the concentrations of the COCs in the soil and groundwater, the free product, and the vapor migration. Due to the location of the concentrations of the COCs in the soil above the Tier 2 SROs in relation to the UST system, excavation is not feasible. As demonstrated above in Section E. 1., in-situ chemical oxidation is not a feasible option due the volume of oxygen and chemical required to treat the mass of contaminants in the saturated zone.

13. For the proposed Tier 2 or 3 remediation objectives, provide the following:

a. The equations used;

The equations used in the Tier 2 evaluation presented above in Section E. 2. are Equations S17 through S22 and S25.

b. A discussion of how input variables were determined;

Site-specific input variables were based on the data collected during the investigation activities performed at the site; while default variables were obtained from 35 IAC Section 742, Appendix C, Tables B, E, and K.

c. Map(s) depicting distances used in equations; and

A map depicting the distance used in the Tier 2 evaluation is illustrated on Figure 4.

d. Calculations;

The Tier 2 calculations are provided in Appendix I.

14. Provide documentation to demonstrate the following for alternative technologies:

a. The proposed alternative technology has a substantial likelihood of successfully achieving compliance with all applicable regulations and remediation objectives;

Based on the lithologies beneath the site where concentrations of the COCs, free product, and vapor migration are most prevalent and the data collected during the pilot test, DPE will be an effective remedial technology for the site.

b. The proposed alternative technology will not adversely affect human health and safety or the environment;

As mentioned above in Section E. 10., TriCore will obtain air discharge and water pollution control permits from the IEPA, as well as a water discharge permit from the Village of Wauconda. By meeting the discharge requirements outlined in the permits, DPE will not adversely affect human health and safety or the environment.

c. The owner or operator will obtain all Illinois EPA permits necessary to legally authorize use of the alternative technology;

As mentioned above in Section E. 10., permits will be obtained from the IEPA to construct and operate the proposed DPE system. A permit will also be obtained from the Village of Wauconda to discharge the treated groundwater into their sanitary sewer system.

d. The owner or operator will implement a program to monitor whether the requirements of subsection (14)(a) have been met;

<u>Soil</u>

As mentioned above in Section E. 4., six months after the DPE system has been shut down, soil samples will be collected from the locations which previously exhibited concentrations above the Tier 2 SROs to reevaluate the concentrations in those locations as a result of the operation of the DPE system.

Groundwater

As mentioned above in Section E. 4., quarterly groundwater monitoring will be conducted during the operation of the DPE system until groundwater concentrations remain below the Tier 1 GROs for two quarters after the system has been shut down.

e. Within one year from the date of Illinois EPA approval, the owner or operator will provide to the Illinois EPA monitoring program results establishing whether the proposed alternative technology will successfully achieve compliance with the requirements of subsection (14)(a); and

Mass removal rates from the DPE system and analytical laboratory results from the quarterly groundwater sampling activities will be provided to the IEPA in the semiannual Remediation Status Reports and/or an Amended CAP.

f. Demonstration that the cost of alternative technology will not exceed the cost of conventional technology and is not substantially higher than at least two other alternative technologies, if available and technically feasible.

As mentioned above in Section E. 12., conventional technology, excavation, is not feasible due to the location of the concentrations of the COCs in the soil in relation to the UST system. Additionally, based on the locations of the concentrations of the COCs in the soil and groundwater and the site lithology, other alternative technologies are not feasible.

F. Exposure Pathway Exclusion

Not applicable.

Provide the following:

- 1. A description of the tests to be performed in determining whether the following requirements will be met:
 - a. Attenuation capacity of the soil will not be exceeded for any of the organic contaminants;
 - b. Soil saturation limit will not be exceeded for any of the organic contaminants;
 - c. Contaminated soils do not exhibit any of the reactivity characteristics of hazardous waste per 35 III. Adm. Code 721.123;
 - d. Contaminated soils do not exhibit a pH < 2.0 or > 12.5; and
 - e. Contaminated soils which contain arsenic, barium, cadmium, chromium, lead, mercury, or selenium (or their associated salts) do not exhibit any of the toxicity characteristics of hazardous waste per 35 III. Adm. Code 721.124.
- 2. A discussion of how any exposure pathways are to be excluded.

G. Signatures

All plans, budgets, and reports must be signed by the owner or operator and list the owner's or operator's full name, address, and telephone number.

UST Owner or Operator	Consultant
Name: <u>Shivam Energy, Inc.</u>	Company: <u>TriCore Environmental, LLC</u>
Contact: Rajani Patel	Contact: Marcos Czako
Address: <u>399 West Liberty Street</u>	Address: <u>1800 West Hawthorne Ln., Suite P</u>
City: <u>Wauconda</u>	City: West Chicago
State: IL	State: <u>IL</u>
ZIP Code:	ZIP Code:
Phone: (847) 7/22-6618	Phone:(630) 520-9973
Signature: Kafam' Hall	Signature:
Date: 03/29/06	Date: 06/10/09

I certify under penalty of law that all activities that are the subject of this plan were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in this plan has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 III. Adm. Code 731, 732 or 734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements or representations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environmental Protection Act [415 ILCS 5/44 and 57.17].

Licensed Professional Er	aineer or Geoloaist	L.P.E. or L.P.G. Seal
Electional Forecoronal El		

Name: Shawn Rodeck
Company: TriCore Environmental, LLC
Address: 1800 West Hawthorne Ln., Suite P
City: West Chicago
State:IL
ZIP Code: 60185
Phone: (630) 520-9973
III. Registration No.: 062-052879
License Expiration Date: 11/30/09
Signature: <u>Shaun Walu</u>
Date:06/10/09

FIGURES

		1	
ΞET		- (N)	
-			
	_		
INCE			
	<u>/</u>		30
	APPROX. SCALE IN FEET		
	LEGEND		
		PROPERTY BOUNDARY APPROXIMATE SOIL EXCAVATION RECOVERY WELL LOCATION 12" RECOVERY SUMP LOCATION	AREA (OCTOBER 1990)
	© .	MONITORING WELL LOCATION DESTROYED MONITORING WELL LI OBSERVATION SUMP LOCATION SOIL VAPOR MONITORING POINT	
	SB-41	SOIL BORING NUMBER	
)]/	2/2/09 SOIL SAMPLING DATE 4'-5' SOIL SAMPLING DEPTH (ft.) 0.289 BENZENE CONCENTRATION (mg/kg) 0.619 TOLUENE CONCENTRATION (mg/kg) 0.0731 ETHYLBENZENE CONCENTRATION (mg/kg) 0.731 TOTAL XYLENES CONCENTRATION (mg/kg) <0.0555 METHYL TERT BUTYL ETHER CONCENTRATION (mg/kg)		
i A	<0.056 NA BOLD	LESS THAN LABORATORY REPORTING LIMIT NOT AVAILABLE CONCENTRATION ABOVE TIER 1 SOIL REMEDIATION OBJECTIVES ESTABLISHED IN 35 IAC PART 742	
	DRAWN BY: MWS FIGURE		
	APPROVED BY: SAR		
	SCALE:	1" = 30'	54
	DATE:	6/12/09	
	DRAWING	FILE: 0401SA3	· · · ·

Soil Geochemical and Geotechnical Results

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

				Tehit Crysmic Carlism	T.	RCW Cyanas		Grain Size Armérica	Geochemical and Bogo Biographics Biographi	Central Promotion	n Hun Crahat Harris		And. Build Density	Specific Granity	PH Cancina Punge Organica	Ministration Democid	etianet Orginic Girtom
Sample ID	Dene Sampled		PID Risting (setti)	lingsg		insie)	E Treachagt	l tai	tede -	5.1	5 61	ipiti Ipiti	s peti		tmakat		l E Ext
WP.2	11.4;:=05	1-3	0.5	14,000													
NP-2	11-Apr-05	5-8	0.7	19,000													
I WP.3	11-Am-CB	8-7	2343		L ra												
59-32	1-Jun-08	7-0.5	414			*0.005	-4210										
83-3 2	1-Jun-06	94-11	PLA.					97% Smd 3% SM	Clark grayish brown, frw grainad SANO ISP1	34.4	17.2	109.6	127.2	745			
69.33	teuser 18-Jan-67	10-11	31												*12	3,200	
\$8-34	18.100.07	36-1C	1.333												tė	1,700	
38.35	18-Jan-OT	8.10	118												*13	2,000	
88-38	18.Jan.07	10-11	43												*12	5,600	
18.37	18.489-07	uuuuuuhilissideeeeee Bail	U.4												4(12) autototellinne	4,200	
58-38	11-Dec-07	2-3	<u>0.1</u>			1											3.27
58.30	11-Cap-07	3-4	a.t														<u>l azrz </u>
58-39	7-440-00	14.25-15-25	ihijā,												*11.0 *11.0	12,780,80	
58-40	7.4.0.00	16-17	<u>l</u>												*11.K	15,325,15	

 Notes:

 1) PID = photoionization detector

 2) bls = below land surface; mg/kg = milligrams per kilogram; mg/L = milligrams per Liter; ppm = parts per million; pcf = pounds per cubic foot; % = percent; --- = no specific units

 3) <1.9 = concentration less than the laboratory reporting limit</td>

 4) The samples were analyzed for grain size analysis, visual soil classification, total porosity, moisture content, dry bulk density, wet bulk density, specific gravity, and fraction of organic carbon using American Society for Testing and Materials methods

 5) The samples were analyzed for total organic carbon using United States Environmental Protection Agency (USEPA) Method 9060

 6) The sample was analyzed for reactive cyanide using USEPA Method 7.3.3.2

 8) The sample was analyzed for reactive sulfide using USEPA Method 7.3.4.2

 9) The samples were analyzed for total petroleum hydrocarbon (TPH) gasoline range organics using USEPA Method 8015

 10) The samples were analyzed for chemical oxygen demand using USEPA Method 410.4

11) Shading = not applicable

Soil Analytical Results - Total Metals

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

					C	OCs and T	ier 1 Soil I	Remediatio	n Objectiv	res	
Ti	er 1 Expe	osure Route	S	(mg/kg)	(mg/kg)	Cadmium Cadmium (ba/gm)	Chromiu Chromiu (mg/kg)	Pe e - - - (mg/kg)	Anoray Mercury (mg/kg)	(mg/kg)	ja Nico (mg/kg)
Inhalation - Resi	dential			750	690,000	1,800	270		10		
Ingestion - Resid	lential			13	5,500	78	230	400	23	390	390
Sample ID	Date Sampled	Sample Depth (feet bls)	PID Reading (ppm)								
SB-33	18-Jan-07	10-11	31	2.8	6.4	<0.59	3.9	2.2	0.012	<2.4	<1.2
SB-34	18-Jan-07	8-10	1,333	<2.4	3.6	<0.61	3.1	2	<0.012	<2.4	<1.2
SB-35	18-Jan-07	8-10	118	<2.5	4.3	<0.63	3.1	2.1	<0.013	<2.5	<1.3
SB-36	18-Jan-07	10-11	0.3	5.3	31	<0.58	15	6.2	<0.012	<2.3	<1.2
SB-37	18-Jan-07	6-8	0.4	<2.3	41	<0.58	18	7.6	0.017	<2.3	<1.2
SB-39	7-Aug-08	14.25-15.25		2.3	41.9	<0.29	14.4	5.9	<0.012	<1.2	< 0.59
SB-40	7-Aug-08	16-17	0	3.8	40.7	<0.3	12.3	6.5	0.012	<1.2	<0.59

Notes:

1) PID = photoionization detector; COCs = constituents of concern

2) bls = below land surface; mg/kg = milligrams per kilogram; ppm = parts per million

3) <1.9 = concentration less than the laboratory reporting limit

4) The soil samples were analyzed for arsenic, barium, cadmium, chromium, lead, selenium, and silver using United States Environmental Protection Agency (USEPA) Method 6010B

5) The soil samples were analyzed for mercury using USEPA Method 7471A

6) --- = no toxicity criteria available for the route of exposure

7) All concentrations are below the Tier 1 soil remediation objectives established in 35 Illinois Administrative Code Part 742

8) Shading = not applicable

Groundwater Geochemical Results

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

			Geochemica	al Parameters	1
		Chemical Oxygen Demand	TPH Gasoline Range Organics	Total Kjeldahl Nitrogen	Total Phosphorus
Sample ID	Date Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-2	19-Jan-07	96	12	1.1	<0.5
MW-11S	19-Jan-07	28	0.2	<1	<0.5
MW-18	19-Jan-07	<21	<0.1	8.5	<0.5
MW-26	19-Jan-07	66	0.13	<1	<0.5
MP-1	19-Jan-07	34	3.1	<1	<0.5
MW-15	23-Jun-08	35.3	0.46	1.2	<0.17
MW-18	23-Jun-08	17.4	<0.0396	8.4	0.18

Notes:

1) mg/L = milligrams per Liter

2) <0.005 = concentration less than the laboratory reporting limit

3) All groundwater samples were analyzed for chemical oxygen demand United States Environmental Protection Agency (USEPA) Method 410.4

4) All groundwater samples were analyzed for total petroleum hydrocarbon (TPH) gasoline range organics using USEPA Method 8015

5) All groundwater samples were analyzed for total kjeldahl nitrogen using USEPA Method 351.2

6) All groundwater samples were analyzed for total phosphorus using USEPA Method 365.4

7) Shading = not applicable

Groundwater Analytical Results - Dissolved Metals

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

			coc	s and Tier	1 Groundw	ater Reme	diation Ob	jectives	1
Tier 1 E	xposure Routes	Arsenic (mg/L)	Entropy (mg/L)	Cadmium Cadmium	Chromium (T/Dm)	p Fead (mg/L)	Mercury Mercury	Selenium (mg/r)	Silve (mg/L)
GCGIER - Class	I Groundwater	0.05	2	0.005	0.1	0.0075	0.002	0.05	0.05
GCGIER - Class	II Groundwater	0.2	2	0.05	1	0.1	0.01	0.05	
Sample ID	Date Sampled								
MW-2	19-Jan-07	<0.02	0.13	<0.005	< 0.005	<0.0075	<0.0002	<0.02	<0.01
MW-11S	19-Jan-07	<0.02	0.058	< 0.005	<0.005	<0.0075	<0.0002	<0.02	<0.01
MW-18	19-Jan-07	<0.02	0.17	<0.005	<0.005	<0.0075	<0.0002	<0.02	<0.01
MW-26	19-Jan-07	<0.02	0.055	<0.005	<0.005	<0.0075	<0.0002	<0.02	<0.01
MP-1	19-Jan-07	<0.02	0.19	<0.005	<0.005	<0.0075	<0.0002	<0.02	<0.01
MW-15	23-Jun-08	< 0.0012	0.0988	0.00058	< 0.00011	0.0044	<0.0001	<0.0016	< 0.00034
MW-18	23-Jun-08	0.014	0.176	0.00014	0.0012	0.0039	<0.0001	<0.0016	<0.00034

Notes:

1) GCGIER = groundwater component of the groundwater ingestion exposure route; COCs = constituents of concern

2) mg/L = milligrams per Liter

3) <0.005 = concentration less than the laboratory reporting limit

4) All concentrations are below the Tier 1 groundwater remediation objectives established in 35 Illinois Administrative Code Part 742 5) All groundwater samples were analyzed for arsenic, barium, cadmium, chromium, lead, selenium, and silver using United States

Environmental Protection Agency (USEPA) Method 6010B 6) All groundwater samples were analyzed for mercury using USEPA Method 7470A

7) --- = no toxicity criteria available for route of exposure

Free Product Recovery Volumes

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

	Recovery/Gauging	Depth to Free Product	Depth to Water	Free Product Thickness	Free Product Recovered	Free Product and Groundwater Recovered
Well ID	Date	(feet below TOC)	(feet below TOC)	(feet)	(gallons)	(gallons)
MW-2	29-Nov-90	10.00	10.30	0.30		
MW-2	27-Jan-92	FP				
MW-2	19-Feb-92	FP				
MW-2	24-Aug-92	FP				
MW-2	19-Jan-93	FP				
MW-2	27-Jun-94	10.95	10.96	0.01		
MW-6	11-Oct-01	sheen	7.39			
MW-6	14-Mar-02	sheen	6.93			
MW-6	6-Jun-02	sheen	6.7			
MW-6	30-Aug-02	sheen	7.27			
MW-6	6-Dec-02	sheen	7.83			
MW-6	6-May-04	sheen	7.45			
MW-7	29-Nov-90	7.39	7.69	0.30		
S-1	31-Dec-08	6.15	6.19	0.04	15	2,500
S-1	5-Jan-09	6.95	7.00	0.05	0.01	4
S-1	9-Jan-09	6.95	6.99	0.04	10	2,000
S-1	27-Jan-09	7.78	7.87	0.09	10	2,100
S-1	30-Jan-09	8.83	8.87	0.04		
S-1	26-Feb-09	7.23	7.31	0.08	0.01	4
S-1	9-Mar-09	5.97	6.03	0.06	15	3,000
S-1	13-Mar-09	6.43	6.47	0.04	14	2,800
S-1	1-Apr-09	6.2	6.23	0.03	10	2,000
S-1	19-May-09	6.94	6.99	0.05		
S-1 S-2	31-Dec-08	6.24	6.27	0.03	See S-1 Above	See S-1 Above
S-2	27-Jan-09	9.19	9.30	0.11	See S-1 Above	See S-1 Above
S-2 S-2	26-Feb-09	7.32	7.39	0.07	See S-1 Above	See S-1 Above
S-2 S-2	9-Mar-09	6.04	6.08	0.04	See S-1 Above	See S-1 Above
S-2 S-2	13-Mar-09	6.52	6.55	0.03	See S-1 Above	See S-1 Above
3-2 \$-2	1-Apr-09	6.25	6.27	0.02	See S-1 Above	See S-1 Above
S-2 S-2	19-May-09	6.95	7.00	0.05		
S-3	31-Dec-08	6.23	6.26	0.03	See S-1 Above	See S-1 Above
S-3	5-Jan-09	6.77	6.82	0.05	0.01	4
S-3	9-Jan-09	6.96	7.02	0,06	See S-1 Above	See S-1 Above
S-3	27-Jan-09	8.15	8.3	0,15	See S-1 Above	See S-1 Above
S-2	30-Jan-09	8.93	8.97	0.04		
S-2 S-3	26-Feb-09	7,32	7.39	0.07	See S-1 Above	See S-1 Above
S-3	26-Peb-09 9-Mar-09	6.04	6,10	0.06	See S-1 Above	See S-1 Above
S-3 S-3	9-Mar-09	6.51	6.54	0.03	See S-1 Above	See S-1 Above
S-3 S-3	1-Apr-09	6.26	6.29	0.03	See S-1 Above	See S-1 Above
S-3 S-3	19-May-09	7.05	7.10	0.05		
5-3 MW-27	31-Dec-08	6.97	7.03	0.06	See S-1 Above	See S-1 Above
MW-27	5-Jan-09	7.25	7.35	0.1	0.01	4
MW-27	6-Jan-09	7.3	7.36	0.06	0.01	1
MW-27	9-Jan-09	7.29	7.39	0.1	See S-1 Above	See S-1 Above
	27-Jan-09	7.59	7.72	0.13	See S-1 Above	See S-1 Above
MW-27	30-Jan-09	7.66	7.68	0.02	See S-1 Above	See S-1 Above
MW-27 MW-27	26-Feb-09	7.28	7.36	0.08	See S-1 Above	See S-1 Above
MW-27 MW-27	13-Mar-09	6.82	6.825	0,005	See S-1 Above	See S-1 Above
111111-21	10-1010-00	<u>0,02</u>		Totals:	74.05	14,417.0

Notes: 1) TOC = top-of-casing 2) Shading = not applicable or not present 3) See S-1 above indicates that the individual volumes of product and groundwater recovered for each well was not noted during that event. The total volumes recovered during that event are noted in S-1.

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

		-		- ·						Remediation Ob	
		1	ier 1 Exposu	ire Routes			Benzen (mg/L)		Ethylbenzer (mg/L)	ne Total Xylene (mg/L)	s MTBE (mg/L)
	Class Ground Class Ground		······································				0.005	1 2.5	0.7	10 10	0.07
Sample ID	Date Sampled	Reference Elevation (feet)	Static Depth to Free Product (feet below TOC)	Static Depth to Water (feet below TOC)	Free Product Thickness (feet)	Groundwater Elevation (feet)	r				
MW-2	29-Nov-90)	10.00	10.30	0.30						
MW-2 MW-2	27-Jan-92 19-Feb-92	5	FP FP								
MW-2	24-Aug-92		FP FP		and the second second						
MW-2	19-Jan-93	and the second	FP								
MW-2	17-Jun-93			10.71		90.35	0.23	3.2	0.65	15	
MW-2 MW-2	11-Nov-93 27-Jun-94	1	10.95	10.96 10.96	0.01	90.10 90.11	0.134	0.01	0.052	1.43	
MW-2	16-Feb-95	1	10,55	10.36	0.01	90.70	0.178	0.0313	0.447	0.3	
MW-2	28-Jul-95	101.06		10.13		90.93	0.257	0.117	0.139	0.808	
MW-2	22-Mar-96	101.06		11.14		89.92	0.1	0.154	0.331	3.93	
MW-2	17-Jun-96	101.06		9.33		91.73	0.0029	0.0041	0.0107	0.355	
MW-2 MW-2	25-Sep-96 24-Apr-97	101.06 101.06		10.68 9.89		90.38 91.17	0.0154	0.0167	0.0546 0.71	0.584 5.76	
MW-2	17-Jun-97	101.06		9.88		91.18	2.57	3.85	0.487	5.53	
MW-2	27-Aug-97	101.06		10.48		90.58	0.116	0.519	0,534	7.45	
MW-2	5-Nov-97	113.61		10.75		102.86	0.076	0.02	0.31	2.4	
MW-2	27-Feb-98	113.61		10.23		103.38	0.17	0.029 0.0011	0.074 0.0075	0.73	
MW-2 MW-2	10-Jun-98 8-Oct-98	113.61 113.61		10.08 10.31		103.53 103.30	0.0079	0.0011	0.0075	1.38	
MW-2	31-Mar-99	113.61		10.12		103.49	0.64	0.024	0.087	250/<5	
MW-2	9-Jun-99	113.61		10.00		103.61	0.77	0.22	0.075	0.62	
MW-2	2-Sep-99	113.61		10.60		103.01	0.086	0.0076	0.029	0.066	
MW-2 MW-2	28-Oct-99 23-Feb-00	113.61 113.61		10.52 10.32		103.09 103.29	0.16 0.55	0.0025 0.019	0.016 0.27	0.041	
MW-2	23-Feb-00 24-May-00	113.61		9.77		103.23	0.09	0.013	0.11	1.37	
MW-2	15-Aug-00	113.61		10.21		103.40	0.36	0.13	0.054	0.41	
MW-2	9-Nov-00	113.61		10.03		103,58	0.14	0.099	0.12	0.96	
MW-2	11-Oct-01	113.61		10.24		103.37	0.027	0.036	0.02	0.142	
MW-2 MW-2	14-Mar-02 6-Jun-02	113.61 113.61		9.85 9.62		103.76 103.99	0.083 0.1	0.012 0.052	0.13 0.32	0.72	
MW-2	30-Aug-02	113.61		10.16		103.45	0.017	0.0058	0.073	0.448	
MW-2	6-Dec-02	113.61		10.62		102.99	0.012	<0.001	0.003	0.0031/<0.001	
MW-2	6-May-04	113.61		10.34		103.27	0.031	0.0014	0.0046	0.003	< 0.01
MW-2 MW-2	21-Apr-05 31-Dec-08	113.61 113.61		10.17 9.58		103.44 104.03	0.035	<0.001	0.0022	0.029	0.024
MW-2	5-Jan-09	113.61		9.84		103.77					
MW-2	6-Jan-09	113.61								to collect samples	5
MW-4	28-Nov-90						3.5	0.33	0.27	1.1	
MW-4 MW-4	27-Jan-92 24-Aug-92						3.1 0.14	0.065	0.072 0.19	4.147 0.49	
MW-4	19-Jan-93						0.26	0.006	BDL	0.021	
MW-4	17-Jun-93	98.97		8.22		90.75	0.015	<0.001	<0.001	0.005	
MW-4	11-Nov-93	98.97		8.58		90.39	<0.001	<0.001	<0.001	<0.001	
MW-4 MW-4	27-Jun-94	98.97 98.97		8.65 8.24		90.32 90.73	0.154 0.253	0.0243	0.0081 0.0845	0.0098 0.202	
MW-4 MW-4	16-Feb-95 28-Jul-95	98.97 98.97		8.24 8.06		90.73	0.253	0.0115	0.0845	0.202	
MW-4	22-Mar-96	98.97		8.75		90.22	0.363	0.346	0.178	0.456	
MW-4	17-Jun-96	98.97		5.79		93.18	<0.002	<0.002	<0.002	<0.005	
MW-4	25-Sep-96	98.97		8.44		90.53	0.0032	<0.002	0.0052	0.0052	
MW-4 MW-4	24-Apr-97 17-Jun-97	98.97 98.97		7.84 6.87		91.13 92.10	0.444	0.0255	0.0945 0.125	0.11 0.273	
MW-4	27-Aug-97	98.97		8.23		90.74	0.0568	0.0321	0.128	0.322	
MW-4	5-Nov-97	111.44		8.54		102.90	0.037	0.0035	0.043	0.11	
MW-4	27-Feb-98	111.44		7.98		103.46	0.13	<0.005	< 0.005	0.04	
MW-4	10-Jun-98	111.44		7.94		103.50 102.92	0.029 0.018	0.019 0.0024	0.022 0.033	0.052 0.1/<0.001	
MW-4 MW-4	8-Oct-98 31-Mar-99	111.44 111.44		8.52 8.07		102.92	<0.018	<0.0024	<0.000	<0.003	
MW-4	9-Jun-99	111.44		8.07		103.37	0.36	0.028	0.28	0.8228	
MW-4	2-Sep-99	111.44		9.50		101.94	0.18	0.017	0.28	1.1/<0.005	
MW-4	28-Oct-99	111,44		8.44		103.00	0.073	0.0046	0.095	0.360/<0.004	
MW-4 MW-4	23-Feb-00 24-May-00	111.44 111.44		8.1 7 7.69		103.27 103.75	0.57	<0.005 0.0057	0.042 0.01	0.061/<0.005	
MW-4	15-Aug-00	111.44		8.10		103.34	0.36	0.022	1	0.140/<0.0025	
MW-4	9-Nov-00	111.44		7.97		103.47	0.16	<0.025	0.13	0.064/<0.005	
MW-4	11-Oct-01	111.44		8.11		103.33	0.039	0.005	0.03	0.013/<0.001	
MW-4	14-Mar-02	111.44		7.68		103.76 104.0 9	0.13	0.0049 <0.001	<0.001 0.0058	<0.003 0.0025/<0.001	
MW-4	6-Jun-02	111.44		7.35		104.09	0.013	-0.001	0.0000	0.0020/~0.001	

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

ſ							000	and Tier 1	Groupdwater B	emediation Obj	ectives
		Ti	er 1 Exposu	re Routes			Benzene	1			
			1				(mg/L)	(mg/L)	(mg/L.)	(mg/L)	(mg/L)
	Class I Ground						0.005	2.5	0.7	10 10	0.07
Sample	Date Sampled	Reference Elevation (feet)	Static Depth to Free Product (feet below TOC)	Static Depth to Water (feet below TOC)	Free Product Thickness (feet)	Groundwater Elevation (feet)					
MW-4	30-Aug-02	111.44		8.05		103.39	0.14	0.013	0.035	0.031/<0.001	
MW-4	6-Dec-02	111.44		8.53 8,25		102.91 103.19	0.17	0.004	0.0016	0.016/<0.001 to collect sample	s
MW-4 MW-4	6-May-04 21-Apr-05	111.44 111.44		8.07		103.37	0.14	0.003	<0.001	0.0035	0.0011
MW-4	5-Jan-09	111.44		7.64		103.80					<u> </u>
MW-4 MW-5	6-Jan-09 28-Nov-90	111.44					<0.005	< 0.005	<0.005	o collect sample <0.01	
MW-5	27-Jan-92						<0.002	<0.002	<0.002	<0.005	
MW-5	24-Aug-92						<0.002 BDL	<0.002 BDL	<0.002 BDL	<0.005 BDL	
MW-5 MW-5	19-Jan-93 17-Jun-93	95.44		4,71		90.73	<0.001	<0.001	<0.001	<0.001	
MW-5	11-Nov-93	95.44		5.09		90,35	<0.001	<0.001	<0.001	<0.001	
MW-5	27-Jun-94	95.44		5.31		90.13	<0.001	< 0.001	<0.001	<0.003	
MW-5 MW-5	16-Feb-95 28-Jul-95	95.44 95.44		4.81 4.99		90.63 90.45	<0.002 <0.0073	<0.002 <0.002	<0,002 <0.002	<0.005 <0.005	
MW-5	28-501-95 22-Mar-96	95.44		5.28		90.16	<0.002	<0.002	<0,002	<0.005	
MW-5	17-Jun-96	95.44		4.24		91.20	<0.002	<0.002	<0.002	< 0.005	
MW-5	25-Sep-96	95.44		5.07 4,40		90.37 91.04	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-5 MW-5	24-Apr-97 17-Jun-97	95.44 95.44		4,40		91.10	<0.002	<0.002	<0.002	<0.003	
MW-5	27-Aug-97	95.44		4.84		90.60	<0.002	<0.002	<0.002	<0.003	
MW-5	5-Nov-97	108.15		5.21		102.94 103.57	<0.001 <0.001	<0.001 <0.001	<0.01 <0.001	<0.003 <0.003	
MW-5 MW-5	27-Feb-98 10-Jun-98	108.15 108.15		4.58 4.53		103.62	<0.001	<0.001	<0.001	<0.003	
MW-5	8-Oct-98	108.15		4.78		103.37	<0.001	<0.001	<0.001	<0.003	
MW-5	31-Mar-99	108.15		4.76		103.39	0.053 <0.001	0.07 <0.001	0.11 <0.001	0.38 <0.003	
MW-5 MW-5	9-Jun-99 2-Sep-99	108.15 108.15		4.65 5.34		103.50 102.81	<0.001	<0.001	<0.001	<0.002	
MW-5	28-Oct-99	108.15		5.19		102.96	<0.001	<0.001	<0.001	<0.003	
MW-5	23-Feb-00	108.15		4.92		103.23	0.004	.0.004	-0.001	<0.003	
MW-5	24-May-00 15-Aug-00	108.15 108.15		4.34 4.81		103.81 103.34	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003	
MW-5 MW-5	9-Nov-00	108.15		4.75		103.40	<0.001	<0.001	<0.001	<0.003	
MW-5	11-Oct-01	108.15		4.80		103.35	<0.001	<0.001	<0.001	<0.003	
MW-5	14-Mar-02	108.15		4.41 4.63		103.74 103 <i>.</i> 52	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-5 MW-5	6-Jun-02 30-Aug-02	108.15 108.15		4.03		103.40	<0.001	<0.001	<0.001	<0.003	
MW-5	6-Dec-02	108.15		5.24		102.91	<0.001	<0.001	<0.001	<0.003	
MW-5	6-May-04						<0.005	<0.005	<0.005	<0.01	
MW-6 MW-6	28-Nov-90 27-Jan-92						-0.000	0.000			
MW-6	24-Aug-92										
MW-6	19-Jan-93			7.07		91.39	BDL <0.001	BDL <0.001	BDL <0.001	BDL <0.001	
MW-6 MW-6	17-Jun-93 11-Nov-93	98.46 98.46		7.07 7.63		90.83	<0.001	<0.001	<0.001	<0.001	
MW-6	27-Jun-94	98.46		7.57		90.89	<0.001	<0.001	<0.001	<0.003	
MW-6	16-Feb-95	98.46		7.41		91.05 91.35	<0.002 0.0045	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-6 MW-6	28-Jul-95 22-Mar-96	98.46 98.46		7.11 7.89		90.57	<0.002	<0.002	<0.002	<0.005	
MW-6	17-Jun-96	98.46		6.11		92.35	<0.002	<0.002	<0.002	<0.005	
MW-6	25-Sep-96	98.46		7.59		90.87 91.59	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-6 MW-6	24-Apr-97 17-Jun-97	98.46 98.46		6.87 6.81		91.65	<0.002	<0.002	<0.002	<0.005	
MW-6	27-Aug-97	98.46		7.34		91.12	<0.002	<0.002	<0.002	< 0.005	
MW-6	5-Nov-97	111.06		7.74		103.32	<0.001 <0.001	<0.001 <0.001	<0.002 <0.001	<0.003 <0.003	
MW-6	27-Feb-98 10-Jun-98	111.06 111.06		7.03 6.97		104.03 104.09	<0.001	<0.001	<0.001	<0.003	
MW-6 MW-6	8-Oct-98	111.06		7.28		103.78	<0.001	<0.001	<0.001	<0.003	
MW-6	31-Mar-99	111.06		7.14		103.92	<0.001	<0.001	<0.001	<0.003 <0.003	
MW-6	9-Jun-99 2-Sep-99	111.06		6.95 7.71		104.11 103.35	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003	
MW-6 MW-6	2-Sep-99 28-Oct-99	111.06 111.06		7.64		103.42	<0.001	<0.001	<0.001	<0.002	
MW-6	23-Feb-00	111.06		7.42		103.64	<0.001	<0.001	<0.001	<0.003 <0.003	
MW-6	24-May-00	111.06		6.68 7.25		104.38 103.81	<0.001 0.58	<0.001 3.1	<0.001 0.55	2.49	
MW-6 MW-6	15-Aug-00 9-Nov-00	111.06 111.06		7.25		103.95	0.069	1	0.35	2.3	
MW-6	11-Oct-01	111.06	sheen	7.39		103.67	0.0000	0.000	0.015	0.032	
MW-6	14-Mar-02	111.06	sheen	6.93		104.13	0.0029	0.002	0.015	0.032	

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

Tigr 1 Exposure Routes Instant		-						COCs	and Tier 1	Groundwater F	temediation Obj	ectives
Color Color <th< th=""><th></th><th></th><th>Ti</th><th>ier 1 Exposu</th><th>ire Routes</th><th></th><th></th><th>(mg/L)</th><th>(mg/L)</th><th>(mg/L)</th><th>(mg/L)</th><th>(mg/L)</th></th<>			Ti	ier 1 Exposu	ire Routes			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Sec. Pace of the sec of th												
Bangle Ten Sever 00 Preside interior 000 Preside interior 0000 Preside interior 000	BOOLEN B		Reference									
MMd 0.4.02 111.05 absen 6.72 0.028 0.007 0.0218 0.0028 0.0018												
Binds State TAS CODE State CODE State CODE State CODE State CODE State CODE					1		104.36	1	1	1		
NMM6 24.06 Particle Pa	MW-6	-	1		1		31		1	1		
MMMB 21.4pc0 111.05 7.28 103.89 40.00 40.01 40.00 <	11				1			1	1		1	<0.001
Mmod 2.4.0-00 111.00 Mmod 2.4.0-00 Mmod 2.4.0-00<	11	-	4	ancen			8					
MMM6 Fund Fund <th< td=""><td>MW-6</td><td>22-Apr-05</td><td></td><td></td><td></td><td></td><td></td><td><0.001</td><td><0.001</td><td><0.001</td><td>< 0.003</td><td><0.001</td></th<>	MW-6	22-Apr-05						<0.001	<0.001	<0.001	< 0.003	<0.001
MM7 28-800 111.00 C.20 7.49 0.30 C.001 6.	1	1	1				88					
MM7 21 AB0-00 7.89 7.89 0.30 Vert at a set of the set of	11	1	1		7.00		104.00	<0.001	<0.001	<0.001	<0.003	<0.001
IMMES 1-1-0-11 99.92 -0.005 -0.005 -0.001 -0.002 -0.005 -0.002 -0.005 -0.002 -0.005 -0.002 -0.005 -0.002 -0.005 -0.002 -0.002 -0.005 -0.002 -0.005 -0.002 -0.005 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001<		1		7.39	7.69	0.30					L	
Invess 10000 00000 400000 40000 40000 <					0.04		80.07	<0.005	<0.005	1		[
MW-80 24.09-20 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.001		1 .	86.88		0.01		00.27		1	1		
MM-85 17.0m 93 99.29 7.6 90.71 -0.002 -0.002	1							<0.002	<0.003	<0.002	<0.007	
Mm38 17.4 mode 80.25 7.6 90.71 -0.01 -0.01 -0.01 -0.01 MM38 17.4 mode 80.25 7.6 90.81 -0.02 -0.02 -	MW-8S	19-Jan-93					00.70	-0.004	<0.001	<0.001	<0.001	
NM-88 1 monsa 9.0.2 7.46 90.83		1	1				8	1		· · ·		
Home is the set of th	IF	1	1				8	1	1			
MM-R8 22-Jule6 92.79 7.14 91.15 -0.002 -0.003 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.001 -0.002 -0.001 <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>90.86</td> <td><0.002</td> <td>1</td> <td>1</td> <td>-</td> <td></td>	1	1					90.86	<0.002	1	1	-	
Nmms 12-marse 9-2.5 <	MW-8S	28-Jul-95								1		
MW-88 WW-85 24 Spep 0.2.5 2.5 Spep 0.2.5 0.2.2 0.2.2 0.002 0.002 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 <th< td=""><td>14</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td></td></th<>	14	1	1				1	1	1		1	
MM-85 2-Apr-87 98.29 6.94 91.35 40.02 -0.02 -0.02 -0.005 MM-85 77.Jup-97 98.29 7.26 91.03 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.003		1					1		1	1	E	
MM-480 17.Jun-97 98.29 6.86 91.43 40.02 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.002 40.003 40.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td><0.002</td> <td><0.002</td> <td><0.002</td> <td></td> <td></td>							1	<0.002	<0.002	<0.002		
WH-85 Shor-87 110.89 7.62 103.27 -0.001 <td>6</td> <td></td> <td></td> <td></td> <td>6.86</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>	6				6.86		1			1	1	
Min-Ba Constrained and a second and a secon	1		1 1									
NM-85 10.0-96		1						1				
MA-85 S-Oct 80 110.89 7.19 103.70 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.003 MM-85 MM-85 3-Mar-99 110.89 7.12 103.77 -0.001	1	1										
MW+SS J-India +99 ILBS J-Ric ILBS	1	1					103.70					
NW-85 2-Sep-99 110.89 7.61 1103.28 40.001 40.001 40.002 MW-85 2-Sep-99 110.89 7.66 103.33 40.001 40.001 40.002 MW-85 2-Sep-80 110.89 7.66 103.31 40.001 40.001 40.001 40.001 MW-85 2-Sep-80 110.89 7.62 103.41 40.001 40.001 40.001 40.003 MW-85 3-Nay00 110.89 7.62 103.69 40.01 40.001 40.001 40.003 MW-85 3-Nay00 110.89 6.91 103.59 40.01 40.001 40.003 MW-85 3-Nay02 110.89 6.71 104.18 40.01 40.001 40.003 MW-85 3-Nay02 110.89 6.71 104.18 40.01 40.01 40.003 MW-85 3-Nay02 110.89 7.64 103.57 40.01 40.01 40.003 40.01 MW-85 3-Nay0 11	MW-8S	31-Mar-99										
MM-SS 2-Sep-as 10.58 7.56 103.33 40.001 <0.001 <0.001 <0.002 MM-SS 23-Feb-00 110.89 7.48 103.41 <0.001												
MW-85 23-Feb-00 110.69 7.48 103.41 <0.001 0.0024 <0.001 <0.0041 MW-85 24-May-00 110.69 6.77 104.12 <0.001											L E	
MW-85 15-Aug-00 110.89 7.62 103.27 <0.001 <0.001 <0.001 <0.003 MW-85 5-Aug-00 110.89 7.20 103.89 <0.001			i i i i i i i i i i i i i i i i i i i		;			<0.001			E E	
MW-85 13-Agr00 110.89 7.20 103.69 4.001 <0.001 <0.001 <0.001 <0.003 MW-85 MW-85 11-Oct.01 110.89 7.26 103.83 <0.001												
MW-85 110-0ct01 110.89 7.26 103.83 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001<		-	1		1						1	
MW-85 H-Mar-02 110.89 6.91 103.98 <0.001 <0.001 <0.001 <0.003 <0.003 MW-85 6-Jun-02 110.89 6.71 104.18 <0.001											8	
MW-85 6-Jun-02 110.89 6.71 104.18 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 MW-85 6-Dec-02 110.89 7.64 103.71 <0.001											b	
MW-85 6J-R4002 H0.101			8		6.71							
MW-85 G-DeCod H10.89 7.39 H03.50 -0.001 -0.001 -0.001 -0.003 <0.001 MW-85 21-Apr-05 110.89 7.22 103.67 -0.001 -0.001 -0.001 -0.003 <0.001			6					[
MW-85 D1Apr-05 110.89 7.22 103.67 40 40 40.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001			2		1						r	<0.001
MW-85 22-Apr-05 MM-85 5-Jan-09 110.89 6.97 103.92 MM Colon <0.001 <0.001 <0.003 <0.001 MW-85 6-Jan-09 110.89 6.97 103.82 -0.001 -0.001 -0.001 -0.003 <0.001			10					0.001				
MW-8S 5-Jan-09 110.89 6.97 103.89 <0.001 <0.001 <0.001 <0.003 <0.001 MW-8S 6-Jan-09 110.89 -0.001 6.001 <0.001		- 1						<0.001	<0.001	<0.001	<0.003	<0.001
MW-85 6-34769 10.059 1.00 10000 40005 <0.005 <0.005 <0.01 MW-8D 1.Apr-91 86.96 6.77 80.19 <0.005		5-Jan-09	18		N N N			<0.001	<0.001	<0.001	<0.003	<0.001
MW-8D I-M-9-1												-0.001
MW-8D 124-Aug-92 40.002 <0.002	1		00,90		0.11		00.10					
MW-8D 19-Jan-93 MW-8D 17-Jun-93 MW-8D 17-Jun-93 98.31 7.50 90.81 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.00	1	1							<0.002	<0.002	<0.005	
MW-8D 11-Nov-93 98.31 7.50 90.81 <0.001	MW-8D	19-Jan-93										
MW-8D 17-W09-93 98.31 7.94 90.37 <0.001 <0.001 <0.003 MW-8D 16-Feb-95 98.31 7.80 90.51 <0.002		ſ	00.24		7.50		90.81	<0 0.01	<0 001	<0.001	<0.001	
MW-8D 16-Feb-95 98.31 7.80 90.51 <0.002 0.0039 <0.002 <0.005 MW-8D 28-Jul-95 98.31 7.65 90.66 0.0023 <0.002		1	R.		13				1		88	
MW-8D 28-Jul-95 98.31 7.65 90.66 0.0023 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <td>[</td> <td></td> <td>100</td> <td></td> <td>8</td> <td></td> <td>1</td> <td><0.002</td> <td>0.0039</td> <td><0.002</td> <td></td> <td></td>	[100		8		1	<0.002	0.0039	<0.002		
MW-80 17-Jun-97 98.31 6.81 91.50 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <td></td> <td>1</td> <td>98.31</td> <td></td> <td>12</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>E</td> <td></td>		1	98.31		12			1		1	E	
MW-8D 25-Sep-69 98.31 7.55 90.76 <0.002 <0.002 <0.002 <0.002 <0.005 MW-8D 24-Apr-97 98.31 7.33 90.98 <0.002			8		8						199 B	
MW-8D 23-58-950 30-31 7.33 90.98 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 MW-8D 17-Jun-97 98.31 7.32 90.99 <0.002	1	1	68		10		1		1		83	
MW-8D 17-Jun-97 98.31 7.32 90.99 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <	1				83			<0.002	<0.002	<0.002	<0.005	
MW-8D 27-Aug-97 98.31 7.85 90.46 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.003 MW-8D 5-Nov-97 111.03 7.00 104.03 <0.001			5 22		7.32		1		1		82	
MW-8D 27-Feb-98 111.03 7.00 104.03 <0.01 <0.001 <0.001 <0.003 MW-8D 10-Jun-96 111.03 7.36 103.67 <0.001	1	- 1	E22					1			192	
MW-8D 27-repsis 111.03 7.36 103.67 <0.001 <0.001 <0.003 MW-8D 10-Jun-96 111.03 7.36 103.67 <0.001	1	1	63		33				1		12	
MW-8D 8-Oct-98 111.03 7.67 103.36 <0.001 <0.001 <0.001 MW-8D 8-Oct-98 111.03 7.67 103.36 <0.001		1	E22		88		,			1		
					100 BE		103.36		1		800 B	
	1		111.03		7.40		103.63	<0.001	<0.001	<0.001	<0.003	

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

							COCs	and Tier 1	Groundwater I	Remediation Ob	jectives
		т	ier 1 Exposu	re Routes			Benzen				
CCCUER	Class I Groun	duator					(mg/L) 0.005	(mg/L)	(mg/L)	(mg/L) 10	(mg/L)
	Class I Groun						0.025	2.5	1	10	0.07
Sample	Date	Reference Elevation	Static Depth to Free Product	Static Depth to Water	Free Product Thickness	Groundwater Elevation					
ID	Sampled		(feet below TOC)	(feet below TOC)	(feet)	(feet)					
MW-8D	9-Jun-99	111.0 3		7.10		103.93	<0.001	< 0.001	<0.001	<0.003 <0.002	
MW-8D MW-8D	2-Sep-99 28-Oct-99	111.03 111.03		8.02 7.95		10 3 .01 103.08	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.002	
MW-8D	23-Feb-00	1		7.92		103,11	<0.001	<0.001	<0.001	<0.003	
MW-8D	24-May-00	1		7.01		104.02	<0.001	<0.001	<0.001	<0.003	
MW-8D	15-Aug-00	1		7.62		103.41	< 0.001	< 0.001	< 0.001	< 0.003	
MW-8D MW-8D	9-Nov-00 11-Oct-01	111.03 111.03		7.72 7.67		103.31 103.36	<0.001 <0.001	<0.005 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-8D	14-Mar-02	1		7.28		103.75	<0.001	< 0.001	< 0.001	< 0.003	
MW-8D	6-Jun-02	111.03		7.04		103.99	<0.001	<0.001	<0.001	<0.003	
MW-8D	30-Aug-02	1		7.51		103.52	<0.001	<0.001	<0.001	<0.003	
MW-8D	6-Dec-02	111.03		8.00		103.03 103.33	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	<0.001
MW-8D MW-8D	6-May-04 21-Apr-05	111.03 111.03		7.70 7.53		103.50	<0.001	<0.001	40.001	~0.005	-0.001
MW-8D	22-Apr-05	111.00		1100			<0.001	<0.001	<0.001	<0.003	<0.001
MW-8D	5-Jan-09	111.03		7.14		103.89					-
MW-8D	6-Jan-09	111.03		A 12		70.00	<0.001	<0.001	<0.001	<0.003	<0.001
MW-9S MW-9S	1-Apr-91 27-Jan-92	86.00		6.12		79.88	<0.005 <0.002	<0.005 <0.002	<0.005 <0.002	<0.01 <0.005	
MW-95	24-Aug-92						<0.002	<0.002	< 0.002	<0.005	
MW-9S	19-Jan-93						BDL	BDL	BDL	BDL	
MW-9S	17-Jun-93	97.42		6.79		90.63	<0.001	<0.001	<0.001	<0.001	
MW-9S	11-Nov-93	97.42		7.04		90.38	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.003	
MW-9S MW-9S	27-Jun-94 16-Feb-95	97.42 97.42		7.03 7.04		90.39 90.38	<0.001 <0.002	<0.001	<0.001	< 0.003	
MW-9S	28-Jul-95	97.42		6.82		90.60	<0.002	<0.002	< 0.002	<0.005	
MW-9S	22-Mar-96	97.42		7.32		90.10	<0.002	<0.002	<0.002	<0.005	
MW-9S	17-Jun-96	97.42		6.35		91.07	<0.002	<0.002	<0.002	<0.005	
MW-9S MW-9S	25-Sep-96	97.42 97.42		7.10 6.72	1.8.1	90.32 90.70	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-95	24-Apr-97 17-Jun-97	97.42		6.74		90.68	<0.002	<0.002	<0.002	<0.005	
MW-95	27-Aug-97	97.42		6.90		90.52	<0.002	<0.002	<0.001	<0.005	
MW-9S	5-Nov-97	110.16		7.21		102.95	<0.001	<0.001	<0.001	<0.003	
MW-9S	27-Feb-98	110.16		6.86		103.30	< 0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-9S MW-9S	10-Jun-98 8-Oct-98	110.16 110.16		6.67 6.83		103.49 103.33	<0.001 <0.001	<0.001	<0.001	< 0.003	
MW-95	31-Mar-99	110.16		6.90		103.26	<0.001	<0.001	<0.001	<0.003	
MW-9S	9-Jun-99	110.16		6.76		103.40	<0.001	<0.001	<0.001	<0.003	
MW-9S	2-Sep-99	110.16		7.26		102.90	<0.001	<0.001	<0.001	<0.003	
MW-9S	28-Oct-99 23-Feb-00	110.16 110.16		7.20 7.90		102.96 102.26	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-9S MW-9S	23-Feb-00 24-May-00	110.16		6.64		103.52	<0.001	< 0.001	<0.001	<0.003	
MW-9S	15-Aug-00	110.16		6.93		103.23	<0.001	<0.001	<0.001	<0.003	
MW-9S	9-Nov-00	110.16		6.75		103.41	<0.001	<0.005	<0.001	<0.003	
MW-9S	11-Oct-01	110.16		6.96		103.20	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-9S MW-9S	14-Mar-02 6-Jun-02	110.16 110.96		6.73 6.52		103.43 104.44	<0.001	<0.001	<0.001	<0.003	
MW-9S MW-9S	30-Aug-02	110.96		6.92		104.04	<0.001	<0.001	<0.001	<0.003	
MW-9S	6-Dec-02	110.96		7.27		103.69	<0.001	<0.001	<0.001	<0.003	
MW-9S	6-May-04	110.96		7.12		103.84	<0.001	<0.001	<0.001	<0.003	<0.001
MW-9S	21-Apr-05	110.96		6.95		104.01	<0.001	<0.001	<0.001	<0.003	<0.001
MW-9S MW-9S	22-Apr-05 6-Jan-09					F				ge or collect san	1
MW-9D	1-Apr-91	86.06		6.26		79.80	<0.005	<0.005	<0.005	<0.01	
MW-9D	27-Jan-92						<0.002	<0.002	<0.002	<0.005	
MW-9D	24-Aug-92						<0.002	<0.002	<0.002	<0.005	
MW-9D MW-9D	19-Jan-93 17-Jun-93										
MW-9D	11-Nov-93	97.48		7.13		90.35	<0.001	<0.001	<0.001	<0.001	
MW-9D	27-Jun-94	97.48		7.13		90.35	<0.001	<0.001	<0.001	<0.003	
MW-9D	16-Feb-95	97.48		7.15		90.33	<0.002	<0.002	<0.002	<0.005	
MW-9D	28-Jul-95	97.48		6.92		90.56	< 0.002	< 0.002	<0.002	<0.005 <0.005	
MW-9D MW-9D	22-Mar-96 17-Jun-96	97.48 97.48		7.42 6.44		90.06 91.04	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005	
MW-9D	25-Sep-96	97.48		7.19		90.29	<0.002	<0.002	<0.002	<0.005	
MW-9D	24-Apr-97	97.48		6.84		90.64	<0.002	<0.002	<0.002	<0.005	
MW-9D	17-Jun-97	97.48		6.79		90.69	<0.002	< 0.002	<0.002	<0.005	
MW-9D	27-Aug-97	97.48		7.02		90.46	<0.002	<0.002	<0.002	<0.005	

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

		CONTRACTOR OF					COCs	and Tier 1	Groundwater	Remediation Ob	jectives
		Т	ier 1 Exposu	re Routes			Benzen				
				1005			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	Class I Groun Class II Grour						0.005	2.5	0.7	10 10	0.07
		Reference	Static Depth to	Static Depth to	Free Product		r				
Sample ID	Date Sampled	Elevation (feet)	Free Product (feet below TOC)	Water (feet below TOC)	Thickness (feet)	Elevation (feet)					
MW-9D	5-Nov-97		,	7.32		102.94	<0.001	<0.001	<0.001	<0.003	
MW-9D	27-Feb-98	110.26		6.74		103.52	<0.001	<0.001	<0.001	< 0.003	
MW-9D	10-Jun-98	1		6.79		103.47 103.33	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-9D MW-9D	8-Oct-98 31-Mar-99	110.26 110.26		6.93 7.01		103.35	< 0.001	<0.001	<0.001	<0.003	
MW-9D	9-Jun-99	110.26		6.87		103.39	<0.001	<0.001	<0.001	<0.003	
MW-9D	2-Sep-99	110.26		7.41		102.85	<0.001	<0.001	<0.001	<0.003	
MW-9D	28-Oct-99			7.31		102.95	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-9D MW-9D	23-Feb-00 24-May-00			7.10 6.74		103.16 103.52	<0.001	<0.001	<0.001	<0.003	
MW-9D	15-Aug-00	1		7.07		103.19	<0.001	<0.001	<0.001	<0.003	
MW-9D	9-Nov-00	110.26		6.90		103.36	<0.001	<0.001	<0.001	<0.003	
MW-9D	11-Oct-01	110.26		7.05		103.21	< 0.001	<0.001	<0.001	<0.003 <0.003	
MW-9D MW-9D	14-Mar-02 6-Jun-02	110.26 110.26		6.83 6.62		103.43 103.64	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003	
MW-9D MW-9D	30-Aug-02	1		7.04		103.04	<0.001	<0.001	<0.001	<0.003	
MW-9D	6-Dec-02	110.26		7.38		102.88	<0.001	<0.001	<0.001	<0.003	
MW-9D	6-May-04	110.26		7.21		103.05	<0.001	<0.001	<0.001	<0.003	<0.001
MW-9D MW-9D	21-Apr-05 22-Apr-05	110.26		7.04		103.22	<0.001	<0.001	<0.001	<0.003	<0.001
MW-9D MW-9D	5-Jan-09	110.26		6.91		103.35		-0.001	-0.001	0,000	0.001
MW-9D	6-Jan-09	110.26					<0.001	<0.001	<0.001	<0.003	<0.001
MW-10S	1-Apr-91	85.93		5.28		80.65	<0.005	<0.005	<0.005	<0.010	
MW-10S	27-Jan-92						<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-10S MW-10S	24-Aug-92 19-Jan-93						BDL	BDL	<0.002 BDL	BDL	
MW-103	17-Jun-93	96.38		5.91		90.47	<0.001	<0.001	<0.001	<0.001	
MW-10S	11-Nov-93	96.38		6.12		90.26	<0.001	<0.001	<0.001	<0.001	
MW-10S	27-Jun-94	96.38		6.11		90,27	<0.001	<0.001	< 0.001	< 0.003	
MW-10S	16-Feb-95 28-Jul-95	96.38		6.08 5.84		90.30 90.54	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-10S MW-10S	28-Jul-95 22-Mar-96	96.38 96.38		6.33		90.05	<0.002	<0.002	<0.002	<0.005	
MW-10S	17-Jun-96	96.38		5.26		91.12	<0.002	<0.002	<0.002	<0.005	
MW-10S	25-Sep-96	96.38		6.09		90.29	<0.002	<0.002	<0.002	<0.005	1000
MW-10S	24-Apr-97	96.38		5.73		90.65 90.74	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-10S MW-10S	17-Jun-97 27-Aug-97	96.38 96.38		5.64 5.90		90.48	0.0126	<0.002	<0.002	<0.005	
MW-105	5-Nov-97	108.99		6.19		102.80	<0.001	<0.001	<0.001	<0.003	
MW-10S	27-Feb-98	108.99		5.77		103.22	<0.001	<0.001	<0.001	<0.003	
MW-10S	10-Jun-98	108.99		5.66		103.33	<0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-10S MW-10S	8-Oct-98 31-Mar-99	108.99 108.99		5.83 5.95		103.16 103.04	<0.001 <0.001	<0.001	<0.001 <0.001	<0.003	
MW-10S	9-Jun-99	108.99		5.76		103.23	<0.001	<0.001	< 0.001	<0.003	
MW-10S	2-Sep-99	108.99		6.21		102.78	<0.001	<0.001	<0.001	<0.003	
MW-10S	28-Oct-99	108.99		6.30		102.69	<0.001	<0.001	<0.001	< 0.003	
MW-10S	23-Feb-00	108.99 108.99		6.06 5.68		102.93 103.31	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-10S MW-10S	24-May-00 15-Aug-00	108.99		5.68 5.94		103.05	<0.001	< 0.001	<0.001	< 0.003	
MW-105	9-Nov-00	108.99		5.90		103.09	<0.001	<0.005	<0.001	<0.003	
MW-105	11-Oct-01	108.99		5.94		103.05	<0.001	< 0.001	<0.001	<0.003	
MW-10S	14-Mar-02	108.99		5.79		103.20 103.44	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-10S MW-10S	6-Jun-02 30-Aug-02	108.99 108.99		5.55 5.91		103.44	<0.001	< 0.001	<0.001	<0.003	
MW-103	6-Dec-02	108.99		6.24		102.75	<0.001	<0.001	<0.001	<0.003	
MW-10S	6-May-04	108.99		6.15		102.84	<0.001	<0.001	<0.001	<0.003	<0.001
MW-10S	21-Apr-05	108.99		5.97		103.02	-0.001	-0.001	<0.001	<0.003	<0.001
MW-10S	22-Apr-05 5-Jan-09	108.99		5.69		103.30	<0.001	<0.001	<0.001	×0.003	-0.001
MW-10S MW-10S	5-Jan-09 6-Jan-09	108.99	and the second second	0.00			<0.001	<0.001	<0.001	<0.003	<0.001
MW-10D	1-Apr-91	85.06		5.62		79.44	<0.005	<0.005	<0.005	<0.010	[
MW-10D	27-Jan-92						0.005	<0.002	< 0.002	<0.005	
MW-10D	24-Aug-92						<0.002	<0.002	<0.002	<0.005	
MW-10D MW-10D	19-Jan-93 17-Jun-93			100							
MW-10D	11-Nov-93	96.31		6.21		90.10	<0.001	<0.001	<0.001	<0.001	
MW-10D	27-Jun-94	96.31		6.23		90.08	<0.001	<0.001	<0.001	<0.003	
MW-10D	16-Feb-95	96.31		6.15		90.16	<0.002	<0.002	<0.002 <0.002	<0.005 <0.005	
MW-10D	28-Jul-95	96.31		5.90		90.41	<0.002	<0.002	-0.002	-0.000	en e

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

							COCs	and Tier 1	Groundwater	Remediation Ob	jective
		Ti	er 1 Exposu	re Routes			Benzene (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg
	lass I Ground lass II Ground						0.005	2.5	0.7	10 10	0.0
Sample ID	Date Sampled	Reference Elevation (feet)	Static Depth to Free Product (feet below TOC)	Static Depth to Water (feet below TOC)	Free Product Thickness (feet)	Groundwater Elevation (feet)					
MW-10D	22-Mar-96	96.31		6.42		89.89	<0.002	<0.002	<0.002	<0.005	
MW-10D	17-Jun-96	96.31		5.27		91.04	<0.002	< 0.002	<0.002	<0.005	
MW-10D	25-Sep-96	96.31		6.17 5.77		90.14 90.54	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-10D MW-10D	24-Apr-97 17-Jun-97	96.31 96.31		5.77 5.74		90.54	<0.002	<0.002	<0.002	<0.005	
MW-10D	27-Aug-97	96.31		6.83		89.48	< 0.002	<0.002	<0.002	<0.005	
MW-10D	5-Nov-97	108.93		6.13		102.80	<0.001	<0.001	<0.001	<0.003	
MW-10D	27-Feb-98	108.93		5.71		103.22	<0.001	<0.001	<0.001	<0.003	
MW-10D	10-Jun-98	108.93		5.61		103.32	<0.001	< 0.001	< 0.001	< 0.003	
MW-10D	8-Oct-98	108.93		6.79		102.14	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-10D	31-Mar-99 9-Jun-99	108.93 108.93		5.90 5.81		103.03 103.12	<0.001	<0.001	<0.001	<0.003	
MW-10D MW-10D	2-Sep-99	108.93		6,18		102.75	< 0.001	<0.001	< 0.001	< 0.003	
MW-10D	28-Oct-99	108.93		6.18		102.75	<0.001	<0.001	<0.001	<0.003	
MW-10D	23-Feb-00	108.93		6.10		102.83	<0.001	<0.001	<0.001	<0.003	
MW-10D	24-May-00	108.93		5.55		103.38	<0.001	<0.001	<0.001	< 0.003	
MW-10D	15-Aug-00	108.93		5.91		103.02	<0.001	<0.001	<0.001	<0.003	
MW-10D	9-Nov-00	108.93		5.80		103.13 103.03	<0.001 <0.001	<0.005 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-10D MW-10D	11-Oct-01 14-Mar-02	108.93 108.93		5.90 5.74		103.03	<0.001	<0.001	<0.001	<0.003	
MW-10D MW-10D	6-Jun-02	108.93		5.52		103.41	<0.001	<0.001	<0.001	<0.003	
MW-10D	30-Aug-02	108.93		5.85		103.08	<0.001	<0.001	<0.001	<0.003	
MW-10D	6-Dec-02	108.93		6.22		102.71	<0.001	<0.001	<0.001	<0.003	
MW-10D	6-May-04	108.93		6.09		_102.84	<0.001	<0.001	<0.001	<0.003	0.00
MW-10D	21-Apr-05	108.93		5.94		102.99					
MW-10D	22-Apr-05			5.00		102.24	<0.001	<0.001	< 0 .001	<0.003	0.00
MW-10D	5-Jan-09	108.93		5.62		103.31	<0.001	<0.001	<0.001	<0.003	<0.0
MW-10D MW-11S	6-Jan-09 1-Apr-91	108.93 85.82		5.52		80.30	0.15	<0.005	<0.005	0.011	
MW-11S	27-Jan-92	00.02					3.6	0.021	0.18	4.491	
MW-11S	24-Aug-92						0.006	0.029	0.006	0.81	
MW-11S	19-Jan-93						1.3	0.007	0.03	0.1	
MW-115	17-Jun-93	96.99		6.01		90.98	0.14	<0.001	< 0.001	<0.001 <0.001	
MW-11S	11-Nov-93	96.99		6.80 6.84		90.19 90.15	1.35 0.785	<0.001 0.0094	<0.001 0.173	0.282	
MW-11S	27-Jun-94 16-Feb-95	96.99 96,99		6.53		90.46	1.55	0.0248	0.163	0.239	·
MW-115	28-Jul-95	96.99		6.42		90.57	0.954	0.0545	0.316	0.29	
MW-11S	22-Mar-96	96.99				96.99					
MW-11S	17-Jun-96	96.99		4.43		92.56	<0.002	<0.002	<0.002	<0.005	
W-115	25-Sep-96	96.99		6.77		90.22	1.76	0.0443	0.519	1.22	
4W-11S	24-Apr-97	96.99		6.12		90.87	0.384	0.0087	0.134	2.1	
AW-115	17-Jun-97	96.99		6.11 6.58		90.88 90.41	3.94 1.79	1.02 0.586	0.734 0.657	2.06 1.2	
AW-115 AW-115	27-Aug-97 5-Nov-97	96.99 109.54		6.85		102.69	1.75	0.05	0.37	0.023	
/W-115 /W-115	27-Feb-98	109.54		6.58		102.96	0.19	<0.005	0.033	0.11	
/W-11S	10-Jun-98	109.54		6.29		103.25	0.8	0.014	0.12	<0.001	
/W-11S	8-Oct-98	109.54		6.49		103.05	0.91	0.03	0.4	0.76	
/W-115	31-Mar-99	109.54		6.42		103.12	0.28	<0.002	0.04	0.012/<0.002	
1W-115	9-Jun-99	109.54		6.40		103.14	3.7	6.7	0.73	2.77 1.34	
4W-11S	2-Sep-99	109.54		7.16		102.38 102.70	1.4 0.78	0.029	0.43 0.31	0.889	
/W-11S /W-11S	28-Oct-99 23-Feb-00	109.54 109.54		6.84 6.25		102.70	0.0028	<0.001	<0.001	<0.003	
1	23-Feb-00 24-May-00	109.54		6.05		103.49	0.018	<0.001	0.0011	<0.003	
1	15-Aug-00	109.54		6.62		102.92	1.3	0.051	0.42	1.116	
1W-11S	9-Nov-00	109.54		6.35		103.19	0.37	<0.025	0.03	0.097/<0.005	
1W-115	11-Oct-01	109.54		6.56		102.98	0.78	<0.021	0.44	0.95/<0.01	
	14-Mar-02	109.54		5.89		103.65	0.024	< 0.001	< 0.001	<0.003 0.0077/<0.001	
1W-11S	6-Jun-02	109.54		5.43		104.11 103.02	0.073 1.2	0.0036	0.012 0.55	0.86/<0.01	
1	30-Aug-02 6-Dec-02	109.54 109.54		6.52 6.88		103.02	2.1	0.051	0.55	0.26/<0.02	
1W-11S 1W-11S	6-Dec-02 6-May-04	109.54		6.59		102.00	0.059	<0.001	<0.001	<0.003	<0.00
	21-Apr-05	109.54		6.38		103.16	0.012	<0.001	<0.001	<0.003	<0.00
W-115	6-Jan-09	109,54		5.65		103.89	<0.001	<0.001	<0.001	<0.003	<0.00
1W-11D	1-Apr-91	85.90		6.57		79.33	<0.005	<0.005	<0.005	<0.01	
	27-Jan-92						<0.002	<0.002	<0.002	< 0.005	
	24-Aug-92	-					<0.004	<0.002	<0.002	<0.005	
1W-11D	19-Jan-93				NAMES OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO			mar 200 million 2 (400 million 200	E	······································	

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

				_					Groundwater F		
		Ti	er 1 Exposu	re Routes			Benzena (mg/L)	(mg/L)	(mg/L)	(mg/L)	(m)
	lass Ground						0.005 0.025	2.5	0.7	10 10	0.
Sample ID	Date Sampled	Reference Elevation (feet)	Static Depth to Free Product (feet below TOC)	Static Depth to Water (feet below TOC)	Free Product Thickness (feet)	Groundwate Elevation (feet)	r				
MW-11D	11-Nov-93	97.02		6.81		90.21	<0.001	<0.001	<0.001	<0.001	
MW-11D	27-Jun-94	97.02		6.95		90.07	0.248	0.0028	0.0637	0.135	
MW-11D	16-Feb-95	97.02		6.70		90.32	0.433	0.0058	0.0407	0.0446	
MW-11D	28-Jul-95	97.02		6.49 7.07		90.53 89.95	0.94 0.424	0.0386	0.219 0.0467	0.0191	
MW-11D MW-11D	22-Mar-96 17-Jun-96	97.02 97.02		6,12		90.90	0.0482	< 0.002	< 0.002	< 0.005	
MW-11D	25-Sep-96	97.02		6.89		90,13	0.392	0.0077	0.104	0.204	
MW-11D	24-Apr-97	97.02		6.31		90.71	0.339	0.131	0.0807	0.184	
MW-11D	17-Jun-97	97.02		6.32		90.70	1.56	0,368	0.278	0.956	
MW-11D	27-Aug-97	97.02		7.84		89.18	0.311	0.0167	0.0837	0.224	
MW-11D	5-Nov-97	109.58		7.13 6.23		102.45 103.35	0.17 0.024	<0.0045	<0.09	<0.003	
MW-11D MW-11D	27-Feb-98 10-Jun-98	109.58 109.58		6.52		103.06	0.024	<0.001	<0.001	<0.003	
MW-11D	8-Oct-98	109.58		6.76		102.82	0.12	0.004	0.038	0.044	
MW-11D	31-Mar-99	109.58		6.90		102.68	0,0034	<0.001	<0.001	<0.003	
MW-11D	9-Jun-99	109.58		6.64		102.94	0.75	1.4	0.14	0.53	
MW-11D	2-Sep-99	109.58		7.22		102.36	0.082	0.0048	0.037	0.1225	
MW-11D	28-Oct-99	109.58		7.10		102.48 102.67	0.077	0.0023	0.035	0.1	
MW-11D MW-11D	23-Feb-00 24-May-00	109.58 109.58		6.91 6. 4 9		102.07	0.0011	< 0.0012	< 0.001	<0.003	
MW-11D	15-Aug-00	109.58		7.04		102.54	0.014	<0.001	0.0053	0.011	
MW-11D	9-Nov-00	109.58		6.95		102.63	0.26	<0.012	0.027	0.059	
MW-11D	11-Oct-01	109.58		6.83		102.75	0.017	<0.001	0.0035	<0.003	
MW-11D	14-Mar-02	109.58		6.42		103.16	<0.001	<0.001	<0.001	< 0.003	
MW-11D	6-Jun-02	109.58		6.33		103.25	<0.001	<0.001	< 0.001	<0.003	
MW-11D	30-Aug-02	109.58		6.74		102.84 102.49	0.035	<0.001 <0.001	0.0012 <0.001	<0.003 <0.003	
MW-11D MW-11D	6-Dec-02 6-May-04	109.58 109.58		7.09 6.80		102.49	0.001	< 0.001	<0.001	<0.003	0.00
MW-11D MW-11D	8-iviay-04 21-Apr-05	109.58		6.63		102.95	<0.001	<0.001	<0.001	< 0.003	<0.0
MW-11D	6-Jan-09	109.58		6.26		103.32	<0.001	<0.001	<0.001	<0.003	0.00
MW-12S	1-Apr-91	81.23		2.21		79.02	1.8	0.14	0.11	0.4	
MW-12S	27-Jan-92						0.041	0.002	0.013	0.054	
MW-12S	24-Aug-92						0.2 BDL	0.002 BDL	0.004 BDL	~ 0.005 BDL	
MW-12S	19-Jan-93 17-Jun-93	92.64		2.60		90.04	0.003	<0.001	<0.001	<0.001	
MW-12S MW-12S	11-Nov-93	92.64		2.45		90.19	<0.001	<0.001	<0.001	<0.001	
MW-125	27-Jun-94	92.64		2.52		90.12	0.137	<0.001	<0.001	<0.003	
MW-12S	16-Feb-95	92.64		2.25		90.39	0.0902	<0.002	<0.002	<0.005	
MW-12S	28-Jul-95	92,64		2.10		90.54	0.0137	<0.002	<0.002	<0.005	
MW-12S	22-Mar-96	92.64		2.62		90.02	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-12S	17-Jun-96	92.64		1.50 2.36		91. 14 90.28	<0.002	<0.002	<0.002	< 0.005	
MW-12S	25-Sep-96 24-Apr-97	92.64 92.64		1.89		90.75	<0.002	<0.002	<0.002	<0.005	
MW-125	17-Jun-97	92.64		1.76		90.88	<0.002	<0.002	<0.002	<0.005	
WW-125	27-Aug-97	92.64		2.24		90.40	<0.002	<0.002	<0.002	<0.005	
4W-12S	5-Nov-97	105.19		2.50		102.69	0.0026	< 0.001	< 0.001	< 0.003	
4W-12S	27-Feb-98	105.19		2.56		102.63	<0.001	<0.001	<0.001	<0.003 <0.003	
/W-12S	10-Jun-98	105.19		1.90		103.29 103.02	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003	
AW-125	8-Oct-98 31-Mar-99	105.19 105.19		2.17 2.29		103.02	<0.001	<0.001	<0.001	<0.003	
/W-12S /W-12S	9-Jun-99	105.19		2.13		103.06	0.07	<0.001	<0.001	<0.003	
/W-125	2-Sep-99	105.19		3.75		101.44	<0.001	<0.001	<0.001	<0.002	
/W-12S	28-Oct-99	105.19		2.58		102.61	0.16	0.0045	0.0043	0.005	
/W-12S	23-Feb-00	105.19		2.33		102.86	0.054	0.0021	0.011	0.012	
1W-12S	24-May-00	105.19		1.92		103.27	0.13	0.0034 0.016	0.015 0.053	0.017 0.059	
AW-125	15-Aug-00	105.19		2.23 2.15		102.96 103.04	0.24 0.27	0.016	0.053	0.059	
1W-12S 1W-12S	9-Nov-00 11-Oct-01	105.19 105.19		2.15		103.04	0.11	0.013	0.12	0.1224	
1W-125	14-Mar-02	105.19		1.98		103.21	0.18	0.0075	0.041	0.121	
1W-12S	6-Jun-02	105.19		1.80		103.39	0,18	0.023	0.042	0.0061	
1W-12S	30-Aug-02	105.19		2.20		102.99	0.2	0.027	0.077	0.1817	
1W-12S	6-Dec-02	105.19		2.58		102.61	0.051	0.006	0.017	0.079	0.00
/W-12S	6-May-04	105.19		2.40		102.79 102.99	0.043	0.0035	<0.001 <0.001	0.022 0.0097	0.001
AW-12S	21-Apr-05 29-Dec-08	105.19 105.19		2.20 1.00		102.99	0.021	0,0014	-0.001	0.0007	
/W-125 /W-125	29-Dec-08 5-Jan-09	105.19		1.84		103.35					
	6-Jan-09	105.19					<0.001	<0.001	<0.001	<0.003	<0.00

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

.....

					COCs	and Tier 1	Groundwater F	Remediation Ob	ectives		
		T	ier 1 Exposu	re Routes			Benzene (mg/L)	Toluene (mg/L)	(mg/L)	Total Xylenes (mg/L)	(mg/L)
GCGIER - C	lass Ground	lwater dwater					0.005	2.5	0.7	10	0.07
<u>UUUUUU</u>		Reference		Static Depth to	Free Product	Groundwater					
Sample ID	Date Sampled	Elevation (feet)	Free Product (feet below TOC)	Water (feet below TOC)	Thickness (feet)	Elevation (feet)					
MW-12D	27-Jan-92	-					<0.002	<0.002	<0.002	<0.005	
MW-12D	24-Aug-92						<0.002	<0,002	<0.002	<0.005	
MW-12D MW-12D	19-Jan-93 17-Jun-93										
MW-12D	11-Nov-93	92.79		2.57		90.22	< 0.001	< 0.001	<0,001 <0.001	<0.001 <0.003	
MW-12D MW-12D	27-Jun-94 16-Feb-95	92.79 92.79		3.38 2.85		89.41 89.94	<0.001 <0.002	<0.001 <0.002	<0.001	<0.003	
MW-12D	28-Jul-95	92.79		2.60		90.19	<0.002	<0.002	<0.002	<0.005	
MW-12D	22-Mar-96	92.79		3.15		89.64	<0.002	<0.002	<0.002	<0.005 <0.005	
MW-12D MW-12D	17-Jun-96 25-Sep-96	92.79 92.79		2.08 2.93		90.71 89.86	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005	
MW-12D	23-Sep-90 24-Apr-97	92.79		2.30		90.49	<0.002	<0.002	<0.002	<0.005	
MW-12D	17-Jun-97	92.79		2.29		90.50	< 0.002	<0.002	<0.002	<0.005	
MW-12D	27-Aug-97	92.79		2.75		90.04 102.21	<0.002 <0,001	<0.002 <0.001	<0.002 <0.001	<0.005 <0.003	
MW-12D MW-12D	5-Nov-97 27-Feb-98	105.34 105.34		3.13 1.97		102.21	<0.001	<0.001	<0.001	<0.003	
MW-12D	10-Jun-98	105.34		2.47		102.87	<0.001	<0.001	<0.001	< 0.003	
MW-12D	8-Oct-98	105.34		2.86		102.48 102.57	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-12D MW-12D	31-Mar-99 9-Jun-99	105.34 105.34		2.77 2.68		102.57	<0.001	<0.001	<0.001	<0.003	
MW-12D	2-Sep-99	105.34		3.31		102.03	<0.001	<0.001	<0.001	<0.002	
MW-12D	28-Oct-99	105.34		3.20		102.14	< 0.001	<0.001	<0.001 <0.001	<0.002 <0.003	
MW-12D	23-Feb-00 24-May-00	105.34 105.34		3.00 2.49		102.34 102.85	<0.001 <0.001	<0.001 <0.001	<0.001	< 0.003	
MW-12D MW-12D	15-Aug-00	105.34		2.45		102.52	< 0.001	<0.001	<0.001	<0.003	
MW-12D	9-Nov-00	105.34		2.75		102.59	<0.001	<0.001	<0.001	< 0.003	
MW-12D	11-Oct-01	105.34		2.82 2.50		102.52 102.84	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-12D MW-12D	14-Mar-02 6-Jun-02	105.34 105.34		2.30		102.04	< 0.001	<0.001	<0.001	< 0.003	
MW-12D	30-Aug-02	105.34		2.81		102.53	<0.001	<0.001	<0.001	<0.003	
MW-12D	6-Dec-02	105.34		3.20		102.14	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	<0.001
MW-12D MW-12D	6-May-04 21-Apr-05	105.34 105.34		2.96 3,73		102.38 101.61	<0.001	<0.001	<0.001	<0.03	<0.001
MW-12D MW-12D	5-Jan-09	105.34		2.31		103.03					
MW-12D	6-Jan-09	105.34				70.05	<0.001	<0.001	< 0.001	<0.003 0.56	<0.001
MW-13 MW-13	1-Apr-91 27-Jan-92	85.19		5.24		79.95	2.6	0.3	0.19	0.50	
MW-13	19-Feb-92						1.9	0.01	0.14	0.72	
MW-13	24-Aug-92						14	2.1	0.85	13	
MW-13	19-Jan-93 17-Jun-93	06.50		6.00		90.50	0.009 <0.001	BDL <0.001	BDL <0.001	0.005 <0.001	
MW-13 MW-13	11-Nov-93	96.50 96.50		6.28		90.22	0.81	0.054	0.346	4.56	
MW-13	27-Jun-94	96.5 0		6.29		90.21	0.142	0.0037	0.119	0.413	
MW-13	16-Feb-95	96.50		6.20		90.30 90.49	0.0475 0.41	<0.002 0.0051	0.0202 0.56	0.129 2.548	
MW-13 MW-13	28-Jul-95 22-Mar-96	96.50 96.5 0		6.01 6.53		90.49 89.97	0.212	0.0092	0.0901	0.973	
MW-13	17-Jun-96	96.50		3.78		92.72	<0.002	<0.002	<0.002	<0.005	
MW-13	25-Sep-96	96.50		6.29		90.21 90.70	0.109 <0.002	0.0261 <0.002	0.911 <0.002	9.6 <0.005	
MW-13 MW-13	24-Apr-97 17-Jun-97	96.50 96.50		5.80 5.59		90.91	0.0195	<0.002	0.0201	0.107	
MW-13	27-Aug-97	96.50		6.17		90.33	1.4	0.38	0.361	3.65	
MW-13	5-Nov-97	109.12		6.38		102.74	0.16 <0.001	<0.025 <0.001	0.67 <0.001	5.8 <0.003	
MW-13 MW-13	27-Feb-98 10-Jun-98	109.12 109.12		5.51 5.78		103.61 103. 3 4	0.38	<0.001	0.67	3.4	
MW-13	8-Oct-98	109.12		6.02		103.10	<0.025	<0.025	0.28	3.5	
MW-13	31-Mar-99	109.12		6.17		102.95	0.027	< 0.0025	0.11	0.81 0.903.3	
MW-13 MW-13	9-Jun-99 2-Sep-99	109.12 109.12		6.07 6.6 4		103.05 102.48	0.008 0.23	0.013 <0.025	0.13 0.12	0.903.3	
MW-13 MW-13	2-Sep-99 28-Oct-99	109.12		6.45		102.67	0.2	<0.01	0.11	0.718	
MW-13	23-Feb-00	109.12		5.50		103.62			0.0010	0.024	
MW-13	24-May-00	109.12		5.91		103.21 102.88	0.0073	<0.001 <0.005	0.0019 0.3	0.021	
MW-13 MW-13	15-Aug-00 9-Nov-00	109.12 109.12		6.24 6.08		102.00	<0.001	<0.005	0.0014	<0.003	
MW-13	11-Oct-01	109.12		6.21		102.91	0.05	0.0023	0.069	0.0122	
MW-13	14-Mar-02	109.12		5.89		103.23	< 0.001	<0.001	<0.001 0.009	<0.003 <0.003	
MW-13 MW-13	6-Jun-02 30-Aug-02	109,12 109.12		5.06 6.15		104.06 102.97	0.0077	<0.001 0.0018	0.009	0.0024	
MW-13	6-Dec-02	109.12		6.53		102.59	0.044	<0.01	0.085	<0.03	
		100		1.00							

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

]

							COCs	and Tier 1	Groundwater F	Remediation Ob	ectives
		Ti	er 1 Exposu	ire Routes			Benzene (mg/L)	Toluene (mg/L)	Ethylbenzens (mg/L)	Total Xylene: (mg/L)	MTBE (mg/L)
GCGIER - I	Class Ground	water					0.005	1	0.7	10	0.07
	Class II Ground	dwater					0.025	2.5	1	10	0.07
Sample	Date	Reference Elevation	Static Depth to Free Product	Static Depth to Water	Free Product Thickness	Elevation					
ID	Sampled	(feet) 109.12	(feet below TOC)	(feet below TOC) 6.37	(feet)	(feet) 102.75	0.0039	<0.001	0.013	<0.003	<0.001
MW-13 MW-13	6-May-04 21-Apr-05	109.12		6.27		102.85					
MW-13	22-Apr-05	109.12				101.10	0.0077	<0.001	0.039	0.013	<0.001
MW-13 MW-13	29-Dec-08 5-Jan-09	109.12 109.12		5.00 5,88		104.12 103.24					
MW-13	6-Jan-09	109.12		3.00		100.21	<0.001	<0.001	<0.001	<0.003	<0.001
MW-14	27-Jan-92						<0.002	< 0.002	<0.002	<0.005 <0.005	
MW-14	24-Aug-92 19-Jan-93						<0.002 BDL	<0.002 BDL	<0.002 BDL	BDL	
MW-14 MW-14	19-Jan-93 17-Jun-93	89.62		0.00		89.62	<0.001	<0.001	<0.001	<0.001	
MW-14	11-Nov-93	89.62		0.00		89.62	<0.001	<0.001	< 0.001	<0.001	
MW-14	27-Jun-94	89.62		0.00 0.00		89.62 89.62	<0.001 <0.002	<0.001 <0.002	<0.001 <0.002	<0.003 <0.005	
MW-14 MW-14	16-Feb-95 28-Jul-95	89.62 89.62		0.00		89.62	<0.002	<0.002	<0.002	<0.005	
MW-14	22-Mar-96	89.62				89.62					
MW-14	17-Jun-96	89.62		0.03		89.59 89.57	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.005 <0.005	
MW-14 MW-14	25-Sep-96 24-Apr-97	89.62 89.62		0.05 0.00		89.62	<0.002	<0.002	<0.002	<0.005	
MW-14	17-Jun-97	89.62		0.00		89.62	<0.002	<0.002	<0.002	<0.005	
MW-14	27-Aug-97	89.62		0.00		89.62 98.67	<0.002 <0.001	<0.002	<0.002 <0.001	<0.005 <0.003	
MW-14 MW-14	5-Nov-97 27-Feb-98	99.46 99.46		0.79 0.00		99.46	<0.001	<0.001	<0.001	<0.003	
MW-14	10-Jun-98	99.46		0.00		99.46	<0.001	<0.001	<0.001	<0.003	
MW-14	8-Oct-98	99.46		0.09		99.37	<0.001	<0.001	<0.001	<0.003	
MW-14	31-Mar-99	99.46		0.00 0.00		99.46 99.46	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-14 MW-14	9-Jun-99 2-Sep-99	99.46 99.46		0.19		99.27	< 0.001	<0.001	<0.001	<0.003	
MW-14	28-Oct-99	99.46		0.00		99.46	<0.001	<0.001	<0.001	<0.003	
MW-14	23-Feb-00	99.46		0.00		99.46	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-14 MW-14	24-May-00 15-Aug-00			0.00 0.00			<0.001	<0.001	<0.001	<0.003	
MW-14	9-Nov-00			0.00			<0.001	<0.001	<0.001	<0.003	
MW-14	11-Oct-01	99,16		0.02		99.14	<0.001	<0.001	<0.001 <0.001	<0.003 <0.003	
MW-14 MW-14	14-Mar-02 6-Jun-02	99.16 99.16		0.02 0.00		99.14 99.16	<0.001 <0.001	<0.001 <0.001	<0.001	<0.003	
MW-14	30-Aug-02	99.10		0.00		99.16	<0.001	<0.001	<0.001	<0.003	
MW-14	6-Dec-02	99.16	100	0.00		99.16	<0.001	<0.001	<0.001	< 0.003	<0.001
MW-14	6-May-04	99.16		0.00 0.00		99.16 99.16	<0.001	<0.001	<0.001	<0.003	<0.001
MW-14 MW-14	21-Apr-05 22-Apr-05	99.16 99.16		0.00		55.10	<0.001	<0.001	<0.001	<0.003	<0.001
MW-14	5-Jan-09	99.16		0.30		98.86					
MW-14	6-Jan-09	99.16					<0.001 0.005	<0.001 <0.002	<0.001 <0.002	<0.003	<0.001
MW-15 MW-15	27-Jan-92 24-Aug-92						0.000	<0.002	<0.002	<0.005	
MW-15	19-Jan-93						0.24	BDL	BDL	BDL	
MW-15	17-Jun-93	88.40		0.00		88.40 87.84	0.85 1.03	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	
MW-15 MW-15	11-Nov-93 27-Jun-94	88.40 88.40		0.56 0.50		87.84 87.90	1.03 2,04	<0.001	<0.001	<0.003	
MW-15	16-Feb-95	88.40		0.85		87.55	1.82	<0.002	<0.002	<0.005	
MW-15	28-Jul-95	88.40		0.20		88.20	3.55	<0.002	<0.002 <0.002	<0.005 <0.005	
MW-15 MW-15	22-Mar-96 17-Jun-96	88.40 88.40		0.74 0.00		87.66 88.40	10.5 9.75	<0.002 <0.002	<0.002	<0.005	
MW-15 MW-15	25-Sep-96	88.40		0.75		87.65	7.6	<0.002	<0.002	<0.005	
MW-15	24-Apr-97	88.40		0.16		88.24	10.7	0.0084	<0.002	<0.005	
MW-15	17-Jun-97	88.40		0.00 0.40		88.40 88.00	9.59 8.32	0.0381 <0.05	<0.005 <0.05	<0.005 <0.125	
MW-15 MW-15	27-Aug-97 5-Nov-97	88.40 100.25		0.40		99.57	8.2	<0.05	<0.05	<0.15	
MW-15	27-Feb-98	100.25		0.22		100.03	7.4	<0.1	<0.1	<0.3	
MW-15	10-Jun-98	100.25		0.18		100.07 99.82	6.9 5.4	<0.1 <0.05	<0.1 <0.05	<0.3 <0.15	
MW-15 MW-15	8-Oct-98 31-Mar-99	100.25 100.25		0.43 1.30		99.82 98.95	5.4 4.6	<0.05	<0.025	<0.075	
MW-15	9-Jun-99	100.25		1.20		99.05	4.2	0.032	<0.025	<0.075	
MW-15	2-Sep-99	100.25		1.55		98.70	2.9	0.036	0.034	0.079 0.165	
MW-15	28-Oct-99	100.25 100.25		0.90		98.81 99.35	2.5 1.2	0.049 0.045	0.078 0.091	0.165	
MW-15 MW-15	23-Feb-00 24-May-00	100.25	100	0.30		99.54	0.97	0.034	0.11	0.255	
MW-15	15-Aug-00	100.25		0.86		99.39	0.58	0.024	0.12	0.264	
MW-15	9-Nov-00	100.25		0.75		99,50	0.13	0.0074	0.027	0.055	

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street nda, Lake County, Illinois 60084

SI

535	11030	Liberty	00,000	
Wauconda,	Lake	County,	Illinois	60084

Control France							Turney and the second	COCs	and Tier 1	Groundwater	Remediation Ob	jectives
CONSTRUME State Capity is Water State C			Ti	ier 1 Exposu	ire Routes						(mg/L)	(mg/L)
Stands Texason Statu Factors Statu Factors Statu Factors Free Packst (ref cloor TOC) Free Packst (ref cloor TOC) Statu Factors							·····					0.07
IM-11 1-1-Cal 01 00.02 0.04 96.41 0.2 0.01 0.022 0.1128 MM-15 5-Jun-02 100.25 0.67 96.62 0.21 0.021 0.022 0.028 MM-15 5-Jun-02 100.25 0.63 96.42 0.026 0.021 0.023 0.0268 0.041 0.046 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.023 0.0268 0.028			Elevation	Free Product	Water	Thickness	Elevation	r				
MM:16 10.4.00 00.75 0.4.7 0.6.75 0.1.75 0.0.85 0.0.85 0.0.88 MM:15 0.0.25 0.1.1 99.4 0.2.2 0.0.11 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.31 0.0.88 0.0.25 0.0.021 0.0.21 0.0.021 0.0.021 0.0.01 0.0.015 0.0.024 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.021 0.0.01 0.0.011 0.0.0		1		(rear poien rear)	1			0.2	0.012	0.062	0.1125	
MMM: Solution Solution <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1995 1995</td><td>1</td><td>F</td><td>1</td><td>1</td><td></td></th<>							1995 1995	1	F	1	1	
MM-16 E-DE-D2 00.25 1.11 95.14 0.024 0.023 0.0384 200 MM-15 21.4p-05 10.25 0.79 90.65 0.72 0.024 0.023 0.0084 40.00 MM-15 21.4p-05 10.25 0.40 90.65 0.77 0.024 40.01 0.0044 40.02 MM-15 51.4p-05 10.25 0.40 90.65 90.75 0.024 40.01 40.024 40.024 40.024 40.024 40.024 40.01		1	1		8		88 C				1	
MAX-16 C-1/2 COU23 D.023 D.023 <t< td=""><td></td><td></td><td>1</td><td></td><td>8</td><td></td><td></td><td></td><td>3</td><td>1</td><td>1</td><td></td></t<>			1		8				3	1	1	
MM-16 21-Apr-05 100.25 0.79 99.40 107.8 107.9 99.40 107.8 107.9 90.40 90.78 90.40 90.78 90.40 90.78 90.40 90.78 90.40 90.78 90.40 90.78 90.40 90.78 90.40 90.78			1		3		89		1			<0.001
MM-16 5-Jan-90 100.25 0.00 98.85 More than 10000 -0.001 -0.002 -0.001	1		1				33 3					
MM-10 2-Marcel 2-Marcel MM-10 100.25 0.001 0.013 0.003 0.003 0.003 0.005 0.0	1							0.076	0.0024	<0.001	0.0045	<0.001
MM-16 27.4m 52 90.002 -0.002 -0.002 -0.002 -0.003 -0.004	E		1		0.40		99.85	0.0720	0.004	<0.001	0.0135	0.004
MM-16 24-Aug-52 91.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.001 -0.012 -0.001 -0.015			100.25									0.004
MM-16 19-Jan 33 More and the second of the	1	1						54 C			1	
MM-16 11-Non-36 91-32 2.47 99-35 -0.001 -0.001 -0.001 -0.001 MM-16 67-su-36 91-32 2.69 69-23 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.005 MM-16 37.41 88.68 1.83 -0.002 -0.002 -0.002 -0.005 MM-16 37.41 88.68 1.83 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.005 MM-16 37.41 21.83 33 -0.002 -0.002 -0.005 MM-16 37.41 21.83 -0.02 -0.012 -0.05 MM-16 -0.117 -0.25 -0.075 MM-16 -0.116 MM-16 -0.116 MM-16	1	-						BDL	BDL	BDL	BDL	
IMV-6 07.1mm 07.007 00.001 00.001 00.001 00.001 00.002 00.002 MV-16 07.1mm 07.0mm	MW-16	17-Jun-93	1 1						1			
IMA: BP-Ra-SE COU BP-22 COURD COUDE COUDE <th< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td>8</td><td></td><td>1</td><td>1</td><td></td><td></td></th<>		1					8		1	1		
IMM-16 29-JUSS 9152 2.44 89.38 0.102 -0.002 +0.005 MM-16 27-MU-56 91.32 1.63 90.19 2.08 -0.002 +0.002 +0.005 MM-16 27-MU-57 91.32 7.95 83.44 2.19 -0.002 +0.002 +0.002 MM-16 27-MU-57 91.32 7.95 83.47 3.33 +0.002 +0.002 +0.005 MM-16 77-MU-57 91.32 5.51 60.31 4.17 0.216 -0.005 -0.00					1		88	1	1	1	4	
MM-16 2-Mar-36 91.82 3.14 Be.86 1.83 0.002 0.002 0.002 0.000 MM-16 2-Sap-36 91.82 2.38 96.44 2.18 0.002 0.002 0.002 0.002 0.000 MM-16 2-Ap-477 91.82 7.45 83.37 3.6 0.002 0.002 0.002 0.005 MM-16 2-Ap-077 91.82 5.51 68.31 3.6 0.002 0.002 0.005 0.005 MM-16 10.172 2.56 93.37 3.9 0.012 0.025 0.015 0.015 MM-16 10.172 2.56 93.37 5.1 0.025 0.025 0.025 0.017 MM-16 20.149 101.72 2.56 93.37 5.1 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.0		1					38		1	1	(
MM+16 25.8ap.8a 91.82 7.95 88.47 2.18 40.002 40.002 40.002 40.002 40.005 MM+16 17.4up-37 91.82 7.95 83.87 3.5 40.002 40.002 40.002 40.005 40.055 40.005 40.055 <							88.68	1.83	<0.002	<0.002	<0.005	
MW-16 2 A-mor 37 91.82 7.95 83.87 33.8 -0.002 -0.002 -0.005 S MW-16 17-Jun-87 91.82 5.51 66.31 4.17 0.216 -0.005 0.017 MW-16 5.74-0-58 101.72 6.28 95.44 4.2 -0.056 -0.015 -0.017 -0.015 -0.015 -0.015 -0.015	MW-16	17-Jun-96	91.82				8		1	1		
MW-10 17-Jun-37 91.82 4.49 67.33 3.8 -0.02 -0.002 -0.005 MW-16 27-Aug-37 91.82 5.51 68.1 17 0.215 -0.025 -0.0025 -0.0025 -0.0175 MW-16 27-Feb-58 101.72 6.28 95.44 4.17 0.215 -0.025 -0.025 -0.0175 -0.0175 MW-16 10.1-0-88 101.72 2.36 99.37 3.3 -0.025 -0.025 -0.0175 <							8		1			
MW-re 27-Aug-97 91.82 5.51 86.31 4.11 0.219 0.055 0.017 MM-R 5-Mov-97 101.72 6.28 56.44 4.2 -0.055 -0.055 -0.057 -		1 1					3		E			
mw+16 5.Ngw.37 101.72 7.76 93.97 3.3 0.025 -0.075 F MW+16 27.46-98 101.72 6.26 96.44 4.2 -0.055 -0.075 F MW+16 10-Jun-38 101.72 2.36 99.17 5.1 -0.055 -0.025 -0.075 F MW+16 3-Mar-99 101.72 2.36 99.17 5.1 -0.025 -0.025 -0.075 F MW+16 3-Sup-99 101.72 3.30 99.42 4.4 -0.025 -0.015 -0.015 MW+16 25-Ce-190 101.72 3.05 96.22 4.4 -0.025 -0.017 -0.03 MW+16 25-Ad-190 101.72 2.017 98.61 1.7 -0.01 -0.01 -0.01 -0.03 MW+16 10-0.01 101.72 2.017 98.67 0.13 -0.025 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>1</td><td>1</td><td></td><td></td><td></td></td<>							8	1	1			
MM-8 27Feb-36 10172 6.26 95.44 4.2 -0.050 -0.05 -0.15 MM-86 50.Lun-89 10172 2.36 99.17 5.1 -0.025 -0.025 -0.075 MM-16 3.Mar-99 10172 3.47 98.25 4 -0.025 -0.075 MM-16 2.5ep-99 10172 3.30 98.42 4.8 -0.025 -0.075 MM-16 2.5ep-99 10172 3.50 98.67 3.3 -0.025 -0.075 MM-16 2.5ep-90 10172 2.911 98.65 1.7 -0.010 -0.01 -0.03 MM-16 2.5ep-00 10172 2.911 98.65 1.5 -0.025 -0.025 -0.075 MM-16 5.4up-00 10172 3.06 98.66 1.5 -0.050 -0.011 -0.03 MM-16 1.4up-02 10172 2.75 98.97 0.13 -0.001 -0.003 -0.03 MM-16 6.up-02		1 - 1	6				8			<0.025	<0.075	
MW-18 B-Oct-98 101.72 2.55 99.17 5.1 c0.25 c0.025 c0.075 MW-16 3-Mar-98 101.72 3.47 98.25 4 <0.025		1 1			6.28		95.44	4.2			1	
MW-16 31-Mar-99 101.72 3.47 98.25 4. -0.025 -0.025 -0.075 MW-16 9-Jun-99 101.72 3.30 97.97 4.4 -0.026 -0.056 -0.015 MW-16 28-Oct-99 101.72 3.50 98.22 4.4 -0.025 -0.025 -0.016 -0.017 MW-16 28-Oct-99 101.72 3.50 98.61 2.6 -0.025 -0.025 -0.050 -0.017 MW-16 28-Arbayo 101.72 3.01 98.61 1.5 -0.050 -0.011 -0.03 MW-16 1-0-ct-11 101.72 2.75 98.97 0.017 -0.001 -0.03 MW-16 1-0-ct-11 101.72 2.77 98.76 0.13 -0.001 -0.001 -0.003 MW-16 3-Jun-92 101.72 2.65 99.07 0.2 -0.001 -0.003 -0.003 MW-16 21-Apr-05 101.72 2.65 99.14 -0.001 -0.003 <td></td> <td>1</td> <td>ŧ</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td>		1	ŧ					1			1	
MW-16 9-Jun-99 101.72 3.30 98.42 4.6 -0.05 -0.05 -0.15 MW-16 2-Sep-99 101.72 3.75 97.97 4.4 -0.050 -0.01 -0.02 -0.01 MW-16 2-Sep-59 101.72 3.55 98.67 3.3 -0.025 -0.025 -0.050 -0.050 MW-16 2-Kebayoo 101.72 3.05 98.67 1.3 -0.025 -0.025 -0.050 -0.033 MW-16 15-Augoo 101.72 3.01 98.65 1.7 -0.010 -0.01 -0.033 MW-16 1-Marcol<101.72		1 1	8				8	1			1	
MW-16 2-Sep-99 101.72 3.75 97.97 4.4 <0.050 <0.05 <0.1 MW-16 2-Sep-99 101.72 3.50 98.22 4.4 <0.050		1 1	8				1				1	
MW-16 23-CG+99 101.72 3.50 98.22 4.4 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.025 -0.			6									
MW-16 24-May-00 101.72 2.91 98.81 2.6 <0.025 <0.025 <0.008 MW-16 15-Aug-00 101.72 3.07 98.85 1.7 <0.01			5				98.22	4.4	<0.020			
MW-10 15.Aug-00 101.72 3.07 98.65 1.7 <0.01 <0.01 <0.03 MW-16 9.No-00 101.72 3.11 98.61 1.5 <0.050		1 1	8				1	1 1			1	
MW-16 9-Nov-00 101.72 3.11 98.61 1.5 -0.050 -0.011 -0.033 MW-16 11-Oct-01 101.72 3.06 98.67 0.017 -0.001 -0.001 -0.001 -0.003 -0.003 MW-16 6-Jun-02 101.72 2.65 99.07 0.2 -0.001 -0.001 -0.003 -0.003 MW-16 6-Jun-02 101.72 2.97 98.67 0.13 -0.001 -0.001 -0.003 -0.003 MW-16 6-Jac-02 101.72 3.07 98.65 0.045 -0.001 -0.001 -0.003 -0.003 MW-16 6-Jac-09 101.72 2.58 99.47 -<			R. R								1	
MW-16 L11-Cc+01 L11-T2 L11-Cc L11-Cc+01 L11-T2 L11-T2 L11-T2 L11-Cc+01 L11-T2 L11-Cc+01 L11-T2 L11-T2 <thl11-t2< th=""> <thl11-t2< th=""> <thl11-t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1 1</td><td></td></thl11-t<></thl11-t2<></thl11-t2<>			10				1				1 1	
MW-16 14-Mar-02 101.72 2.75 98.97 0.017 -0.001 -0.003 MW-18 MW-16 6-Jun-02 101.72 2.65 98.07 0.13 -0.001 -0.001 -0.003 -0.003 MW-16 6-Dac-02 101.72 3.21 98.51 0.13 -0.011 -0.001 -0.003 -0.003 MW-16 6-May-04 101.72 3.21 98.51 0.12 -0.011 -0.001 -0.003 -0.003 MW-16 6-May-04 101.72 2.95 98.75 0.13 -0.011 -0.001 -0.001 -0.003 -0.003 MW-16 6-Jan-09 101.72 2.58 98.86 -0.011 -0.001 -0.001 -0.001 -0.003 -0.003 MW-17 5-Na-77 100.91 2.05 98.86 -0.011 -0.001 -0.001 -0.001 -0.003 -0.003 MW-17 5-Na-79 100.91 2.05 98.86 -0.011 -0.001 -0.003 <							1				,	
MW-16 SOUND2 10.12 2.97 99.75 0.13 <0.01 <0.001 <0.003 mail MW-16 8-Dec-02 101.72 3.21 98.65 0.12 <0.001		i I	12		2.75		98.97					
MW-16 G-Dac-02 101.72 3.21 98.51 0.12 <0.01 <0.003 MW-16 6-Dac-02 101.72 3.07 98.51 0.049 <0.001	MW-16	6-Jun-02	E3		1							
MW-16 G-May-05 101.72 3.07 98.65 9.049 <0.01 <0.01 <0.033 0.033 MW-16 21.Apr-05 101.72 2.95 98.77 0.045 <0.001 <0.001 <0.003 0.003 MW-16 5.Jan-09 101.72 2.58 99.14 0.045 <0.001 <0.001 <0.003 <0.003 MW-16 6-Jan-09 101.72 2.58 99.14 0.011 <0.001 <0.001 <0.003 <0.003 MW-17 5-No-97 100.91 2.05 98.86 <0.001 <0.001 <0.001 <0.003 <0.003 MW-17 5-No-97 100.91 1.58 99.33 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 MW-17 8-Oc-98 100.91 2.15 1.87 99.04 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.001 <td></td> <td> </td> <td></td>												
MW-16 D1Aprof 101A2 2.95 98.77 0.045 <0.01 <0.001 <0.003 0.033 MW-16 22.Apr-05 101.72 2.58 99.14 - <td< td=""><td></td><td>1 1</td><td>183</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td>0.0034</td></td<>		1 1	183								1 1	0.0034
MW-16 22-Apr-05 101.72 2.58 99.14 0.045 -0.001 -0.001 -0.003 0.003 MW-16 6-Jan-09 101.72 2.58 99.14 0.0191 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.003 0.003 MW-17 5-Nov-97 100.91 2.05 98.86 -0.001 -0.001 -0.001 -0.003 -0.003 -0.003 MW-17 2.7-Feb.98 100.91 1.63 99.28 -0.001 -0.001 -0.003 -0.003 MW-17 10-Jun-98 100.91 1.63 99.33 -0.001 -0.001 -0.003 -0.003 MW-17 13-Mar-99 100.91 2.29 98.62 -0.001 -0.001 -0.003 -0.003 MW-17 2-Sep.99 100.91 2.65 98.26 -0.001 -0.001 -0.002 -0.002 MW-17 2-Sep.99 100.91 2.04<			197		6							
MW-16 6-Jan-09 101.72 0.0191 0.0191 0.0101 0.0011 0.0031 0.003 0.003 MW-17 5-Nov-97 100.91 2.05 98.86 0.001 0.001 0.001 0.001 0.001 0.003 0.003 MW-17 27-Feb-88 100.91 1.63 99.28 0.001 0.003 1.87 99.04 0.001	MW-16		83					0.045	<0.001	<0.001	<0.003	0.0032
MW-10 DS112 2.05 98.86 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 MW-17 27.Feb-98 100.91 1.63 99.28 <0.001					2.58		99.14	0.0404	-0.001	-0.004	<0.003	<0.001
MW-17 27.Feb-98 100.91 -1.63 99.28 <0.001 <0.001 <0.001 <0.003 MW-17 10-Jun-98 100.91 1.58 99.33 <0.001		5 NI 67	400.04		2.05		98.86					~0.001
MW-17 10-Ju-30-80 100.91			18						1		8	
MW-17 8-Oct-98 100.91 1.87 99.04 <0.001 <0.001 <0.001 <0.001 <0.003 MW-17 31-Mar-99 100.91 2.29 98.62 <0.001							1	<0.001	<0.001	< 0 .001	<0.003	
MW-17 9-Jun-9 100.91 2.15 98.76 <0.001 <0.001 <0.003 MW-17 2-Sep-99 100.91 2.65 96.26 <0.001	MW-17	8-Oct-98	100		P		1				8	
MW-17 2-Sep-99 100.91 2.65 98.26 <0.001 <0.001 <0.002 MW-17 28-Oct-99 100.91 2.65 98.37 <0.001			B22		8					1		
MW-17 28-Oct-90 100.91 2.54 98.37 <0.001			182		8							
MW-17 23-Feb-00 100.91 2.04 98.87 <0.001 <0.001 <0.003 MW-17 24-May-00 100.91 1.81 99.10 <0.001							1	\$	1	1	6	
MW-17 24-May-00 100.91 1.81 99.10 <0.001 <0.001 <0.001 <0.002 MW-17 15-Aug-00 100.91 2.07 98.84 <0.001	5	1	633		8				<0.001	<0.001	8	
MW-17 9-Nov-00 100.91 1.98 98.93 <0.001 <0.005 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <td>MW-17</td> <td>24-May-00</td> <td>100.91</td> <td></td> <td>R3</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	MW-17	24-May-00	100.91		R3		1			1		
MW-17 14-Oct-01 100.91 2.14 98.77 <0.001 <0.001 <0.003 <0.003 MW-17 14-Mar-02 100.91 1.81 99.10 <0.001			123		100				1			
MW-17 6-Jun-02 100.91 1.81 99.10 <0.001 <0.001 <0.003 <0.003 MW-17 6-Jun-02 100.91 1.59 99.32 0.0024 <0.001			E333									
MW-17 6-Jun-02 100.91 1.59 99.32 0.0024 <0.001 <0.003 <0.003 MW-17 30-Aug-02 100.91 2.01 98.90 <0.001	1	1	10.00		10			1		1	10	
MW-17 30-Aug-02 100.91 2.01 98.90 <0.001 <0.001 <0.003 <0.003 MW-17 6-Dec-02 100.91 2.34 98.57 <0.001		,			82			f		< 0 .001	<0.003	
MW-17 2-Apr-05 100.91 2.13 98.78 0.0011 <0.001 <0.003 0.053 MW-17 21-Apr-05 100.91 1.99 98.78 98.78 0.0011 <0.001					2.01		1		1		BX	
MW-17 21-Apr-05 100.91 1.99 98.92 0.0041 <0.001 <0.003 0.057 MW-17 22-Apr-05 100.91 1.99 98.92 0.0041 <0.001	1				100					1	r~	0.052
MW-17 22-Apr-05 100.91 00.001 0.003 0.057	1		1938		83			0.0011	~0.001	SU.UU1	~0.003	0.000
			1933		1.88		50.92	0.0041	<0.001	<0.001	<0.003	0.057
MW-17 5-Jan-09 100.91 1.48 99.43	1		Pice Pice		1.48		99.43					
			1333					<0.001	<0.001	< 0 .001	<0.003	0.0128

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

		Ti	er 1 Exposu	re Routes			COCs Benzend	1	and the second	a Total Xylenes	s MT
			••• • =··p ••••				(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg
	lass I Ground						0.005	2.5	0.7	10 10	0.0
Sample ID	Date Sampled	Reference Elevation (feet)	Static Depth to Free Product (feet below TOC)	Static Depth to Water (feet below TOC)	Free Product Thickness (feet)	Groundwate Elevation (feet)	r				
MW-18	5-Nov-97	99.19		5.32		93.87	<0.001	<0.001	<0.001	<0.003	
MW-18	27-Feb-98	99.19		2.63		96.56	< 0.001	< 0.001	< 0.001	<0.003 <0.003	
MW-18	10-Jun-98	99.19		2.85 6.37		96.34 92.82	<0.001 <0.001	<0.001	<0.001 <0.001	< 0.003	
MW-18 MW-18	8-Oct-98 31-Mar-99	99.19 99.19		2.81		96.38	<0.001	<0.001	<0.001	< 0.003	
MW-18	9-Jun-99	99.19		2.46		96.73	<0.001	<0.001	<0.001	<0.003	
MW-18	2-Sep-99	99.19		4.73		94.46	<0.001	<0.001	<0.001	<0.003	
MW-18	28-Oct-99	99.19		3.95		95.24 95.94	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-18 MW-18	23-Feb-00 24-May-00	99.19 99.19		3.25 2.34		95.94	<0.001	<0.001	< 0.001	< 0.003	
MW-18	15-Aug-00	99.19		2.98		96.21	<0.001	<0.001	<0.001	<0.003	
MW-18	9-Nov-00	99.19		3.35		95.84	<0.001	<0.005	<0.001	< 0.003	
MW-18	11-Oct-01	99.19		3.42		95.77	< 0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-18	14-Mar-02	99.19		2.40 2.33		96.79 96.86	<0.001 <0.001	<0.001	<0.001	<0.003	
MW-18 MW-18	6-Jun-02 30-Aug-02	99.19 99.19		2.33		95.69	<0.001	<0.001	<0.001	< 0.003	
MW-18	6-Dec-02	99.19		3.54		95.65	<0.001	<0.001	<0.001	<0.003	
MW-18	6-May-04	99.19		2.83		96.36	<0.001	<0.001	<0.001	<0.003	<0.0
MW-18	21-Apr-05	99.19		2.73		96.46	<0.001	<0.001	< 0.001	<0.003	<0.0
MW-18	22-Apr-05 5-Jan-09	99.19 99.19		2.34		96.85	<0.001	-0.001	40.001	0.000	
MW-18 MW-18	5-Jan-09 6-Jan-09	99.19 99.19		2.54		00.00	<0.001	<0.001	<0.001	<0.003	<0.0
MW-19	19-Oct-01	100.62		5.42		95.20	<0.001	<0.001	<0.001	<0.003	
MW-19	14-Mar-02	100.62		3.70		96,92	<0.001	<0.001	<0.001	<0.003	
MW-19	6-Jun-02	100.62		2.90		97.72 95.77	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
MW-19	30-Aug-02	100.62 100.62		4.85 5.71		95.77	<0.001	<0.001	<0.001	<0.003	
MW-19 MW-19	6-Dec-02 3-May-04	100.62		4.10		96.52	<0.001	<0.001	<0.001	<0.003	<0.0
MW-19	21-Apr-05	100.62		3.77		96.85					
MW-19	22-Apr-05	100.62					<0.001	<0.001	<0.001	<0.003	<0.0
MW-19	5-Jan-09	100.62		3.33		97.29	<0.001	<0.001	<0.001	<0.003	<0.0
MW-19 BW-1	6-Jan-09 19-Jan-93	100.62					BDL	BDL	BDL	BDL	
BW-1	15-Jan-93						<0.001	<0.001	<0.001	<0.001	
BW-1	11-Jan-93						<0.001	<0.001	<0.001	<0.001	
BW-1	27-Jun-94						<0.001	<0.001	<0.001 <0.002	<0.003 <0.005	
BW-1	16-Feb-95						<0.002 <0.002	<0.002 <0.002	<0.002	<0.005	
BW-1 BW-1	28-Jul-95 22-Mar-96						<0.002	<0.002	<0.002	<0.005	
BW-1	27-Feb-98										
BW-1	11-Oct-01	99.08	Dec.	27.34		71.74	<0.001	< 0.001	< 0.001	< 0.003	
BW-1	14-Mar-02	99.08		25.56		73.52 68.72	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.003 <0.003	
BW-1	6-Jun-02	99.08 99.08		30.36 28.25		68.72 70.83	<0.001	<0.001	<0.001	<0.003	
BW-1 BW-1	30-Aug-02 6-Dec-02	99.08		26.61		72.47	<0.001	<0.001	<0.001	<0.003	
BW-1	6-May-04	99.08							en, manhole ne		
W-1 ('04)	21-Apr-05	108.01		4.58		103.43	0.44	0.0097	0.028	0.11	0.0
W-1 ('04)	29-Dec-08	108.01		2.42 3.93		105.59 104.08					
W-1 ('04) MP-1	5-Jan-09 21-Apr-05	108.01 108.51		5.09		103.42	0.49	0.013	<0.0025	0.015	0.009
MP-1	6-Jan-09	108.51		0.00			0.0301	0.0011	0.0021	<0.003	0.00
MP-2	21-Apr-05	108.72		5.31		103.41	0.23	0.0095	0.14	0.2	0.00
MP-3	21-Apr-05	109.30		5.89		103.41	0.13	0.65	0.13	1.2	0.01
MP-3 MP-4	29-Dec-08 21-Apr-05	109.30		5.17 5.89		104.13 103.44	0.24	0.014	<0.001	0.013	0.006
MW-21	21-Apr-05	109.33		8.79		93.64					
WW-21	22-Apr-05	102.43					<0.001	<0.001	<0.001	<0.003	<0.00
WW-21	5-Jan-09	102.43		6.12		96.31	-0.001	-0.004	<0.001	<0.003	<0.00
MW-21	6-Jan-09	102.43		4.60		102.53	<0.001	<0.001	<u>\0,001</u>	<0.003	-0.00
MW-22	21-Apr-05 22-Apr-05	107.15 107.15		4.62		102.33	<0.001	<0.001	<0.001	<0.003	<0.00
MW-22 MW-22	6-Jan-09	107.15		4.34		102.81	<0.001	<0.001	<0.001	<0.003	<0.00
MW-23	21-Apr-05	104.89		6.90		97.99					
WW-23	22-Apr-05	104.89					<0.001	<0.001	<0.001	<0.003	<0.00
MW-23	5-Jan-09	104.89		6.78		98.11	<0.001	<0.001	<0.001	<0.003	<0.00
WW-23 WW-24	6-Jan-09 21-Apr-05	104.89 105.54		4.35		101.19	<0.001	< 0.001	<0.001	<0.003	<0.00
	21-Api-05 24-May-05	105.54				103.43	<0.001	<0.001	<0.001	< 0.003	<0.00

Groundwater Elevation and Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

					COCs a	nd Tier 1	Groundwater R	emediation Obj	ectives		
		Ti	er 1 Exposu	re Routes			Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)
GCGIER - CI	ass I Groundy	vater					0.005	1	0.7	10	0.07
	ass II Ground						0.025	2.5	1	10	0.07
Sample	Date	Reference Elevation	Static Depth to Free Product	Static Depth to Water	Free Product Thickness	Groundwater Elevation					
ID	Sampled	(feet)	(feet below TOC)	(feet below TOC)	(feet)	(feet)					
MW-26	21-Apr-05	111.38		7.48		103.90			0.004	<0.003	<0.001
MW-26	22-Apr-05	111.38				105.00	<0.001	<0.001	<0.001	<0.003	<0.001
MW-26	29-Dec-08	111.38		6.00		105.38					
MW-26	31-Dec-08	111.38		6.94		104.44					
MW-26	5-Jan-09	111.38		7.23		104.15		0.0755	0.0048	0.0597	0.0017
MW-26	6-Jan-09	111.38					0.0403	0.0755	0.0048	0,0597	0.0017
MW-26	13-Mar-09	111.38		6.83		104.55					
MW-26	1-Apr-09	111.38		6.72		104.66					
MW-26	19-May-09	111.38		7.32		104.06		0.0005	0.15	0.68	0.016
MW-27	21-Apr-05	111.15		7.54		103.61	0.048	0.0095	0.15	0.00	0.010
MW-27	29-Dec-08	111.15		6.83	Sheen	104.32					
MW-27	31-Dec-08	111.15	6.97	7.03	0.06	104.17					
MW-27	5-Jan-09	111.15	7.25	7.35	0.10	103.88					
MW-27	9-Jan-09	111.15	7.29	7.39	0.10	103.84					
MW-27	27-Jan-09	111.15	7.59	7.72	0.13	103.53					
MW-27	30-Jan-09	111.15	7.66	7.68	0.02	103.49					
MW-27	26-Feb-09	111.15	7.28	7.36	0.08	103.85					
MW-27	9-Mar-09	111.15		6.5		104.65					
MW-27	13-Mar-09	111.15	6.82	6.825	0.005	104.33					
MW-27	1-Apr-09	111.15		6.71		104.44					
MW-27	19-May-09	111.15	7.37	7.39	0.02	103.78					
MW-28	21-Apr-05	112.55		8.10		104.45					
MW-28	22-Apr-05	112.55					<0.001	<0.001	<0.001	<0.003	<0.001
MW-28	5-Jan-09	112.55		7.80		104.75					
MW-28	6-Jan-09	112.55					<0.001	<0.001	<0.001	<0.003	<0.001
RW-1	6-Jan-09						0.764	<0.005	0.0052	<0.015	0.0118
RW-1	19-May-09			6.10							
RW-2	1-Apr-09			9.40							
RW-2	19-May-09			9.70							
RW-3	19-May-09			7.20							
RW-4	19-May-09			7.36							
RW-5	19-May-09		6.93	8.40	1.47						
RW-6	19-May-09			7.05							
MW-29	19-May-09		7.32	9.39	2.07						
MW-30	19-May-09		7.46	7.54	0.08						
MW-31	19-May-09			7.36							
MW-32	19-May-09			7.43							

Soil Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

					COCs and	d Tier 1 Soil Re	mediation Obje	ctives
Tier	1 Exposure	Routes		Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	(mg/kg)
SCGIER - Class I Groundwat				0.03	12	13	150 150	0.32
SCGIER - Class II Groundwa Inhalation - Residential	ter			0.17	29 650	19 400	320	8,800
Inhalation - Construction Wor	ker			2.2	42	58	5.6	140
Ingestion - Residential				12	16,000	7,800 20.000	16,000	780
Ingestion - Construction Work Soil Saturation Limit	ker			2,300 870	410,000 650	400	320	8,800
Sample ID	Date Sampled	Sample Depth (feet bis)	PID Reading (ppm)					
SB-1	21-Nov-90	4-5	20	<0.005	0.083	<0.005	0.085	
SB-2/MW-2	21-Nov-90	4-5	20	<0.005	0.11	0.29	1.8	
SB-3	21-Nov-90	4-5	>100	<0.005	0.2	0.22	2	
SB-4/MW-4	21-Nov-90	7-8	50	0.042	0.11	<0.005	<0.01	
SB-5/MW-5	21-Nov-90	9-10	0	0.041	0.11	<0.005	<0.01	
SB-6/MW-6	21-Nov-90	7-8	50	2.9	58	27 20	150 120	
SB-7/MW-7	21-Nov-90	7-8	200	0.27	33 <0.002	<0.002	<0.005	
B-1	14-Jun-94	4-5.5	1	<0.002	<0.002	<0.002	0.0085	
B-2	14-Jun-94 14-Jun-94	1-3 5-7	60	<0.002	<0.002	<0.002	0.342	
B-3	14-Jun-94 14-Jun-94	5-7	50	< 0.002	<0.002	<0.002	0.098	
B-4 B-5	14-Jun-94	2-4	13	<0.002	<0.002	<0.002	<0.005	
B-6	14-Jun-94	2-4	500	< 0.002	< 0.002	< 0.002	<0.005	
B-7	14-Jun-94	- 1		0.029	0.0168	0.219	0.066	
HA-1	27-Aug-97	7.5-8	0	<0.002	< 0.002	<0.002	<0.005	
HA-2	27-Aug-97	7.5-8	12	<0.002	0.147	0.0068	0.376	
HA-3	27-Aug-97	7.5-8	212	8.21	92.4	39.4	238	
HA-4	27-Aug-97	6.0-6.5	284	1.45	6.06	3.46	44.5	
SB-19/MW-17	31-Oct-97	10-12	0	<0.01	<0.01	<0.01	<0.03	
SB-19/MW-17	31-Oct-97	20-22	0	<0.01	<0.01	<0.01	<0.03	
SB-20/MW-18	31-Oct-97	12-14	0	<0.01	<0.01	<0.01	< 0.03	
SB-20/MW-18	31-Oct-97	20-22	0	<0.01	<0.01	<0.01	<0.03 <0.03	
CB-1	25-Oct-99	6-8	104	0.2	0.35	0.72	<0.03	
CB-2	25-Oct-99	8-10	294	26 4.7	240 190	95	49	
CB-3	25-Oct-99	6-8	510 90	4.7 <0.12	1.9	3.4	200/<60	
CB-4	25-Oct-99 25-Oct-99	8-10 8-10	21.9	<0.028	<0.056	<0.056	37	
CB-5 CB-6	25-Oct-99	4-6	6.6	<0.029	<0.058	<0.058	0.72	
CB-0 CB-7	25-Oct-99	24-26	2.6	0.58	<0.063	<0.063	<0.6	
CB-8	25-Oct-99	22-24	6.3	0.57	<0.06	<0.06	<0.179	-
CB-9	25-Oct-99	26-28	7.6	1.6	<0.06	<0.06	<0,178	
CB-10	25-Oct-99	10-12	2.6	<0.14	<0.28	<0.28	<0.167	
CB-11	26-Jul-00	10-12	321	0.7	13	5.9	3.9	
CB-12	26-Jul-00	6~8	553	<0.049	4.8	5.5	540	
CB-13	26-Jul-00	8-10	307	<0.03	0.11	0.085	590	
CB-14	26-Jul-00	8-10	514	<0.052	0.76	3.4	22.7	
CB-15	26-Jul-00	8-10	18	< 0.03	<0.060	<0.060	<0.166 <0.178	
CB-16	26-Jul-00	6-8	2.7	<0.021	<0.200	<0.2	<0.178	
CB-17	26-Jul-00	2-4	3.0	<0.029	<0.059 <0.058	<0.059 <0.058	<0.193	
CB-18	26-Jul-00	6-8	3.6	<0.029 <0.029	<0.058	<0.058	<0.18	
CB-19	26-Jul-00	0-2	3.3 3.2	<0.029	<0.037	<0.037	<0.84	
CB-20	26-Jul-00	6-8 22-24	3.2	<0.018	<0.057	<0.057	<0.51	
MW-19	17-Aug-01 17-Aug-01	4-6		<0.029	<0.058	<0.058	<0.167	
B-1a B-1b	17-Aug-01	16-18		<0.03	<0.06	<0.06	<0.178	
B-1D	17-Aug-01	22-24		<0.029	<0.058	<0.058	<0.18	
B-2a	16-Aug-01	8-10		<0.029	<0.057	<0.057	<0.178	
B-2b	16-Aug-01	16-18		<0.0079	<0.120	<0.12	<0.167	
B-20 B-2c	16-Aug-01	22-24		<0.029	<0.058	<0.058	<0.35	
B-3a	16-Aug-01	8-10		<0.03	<0.06	<0.06	<0.178	
B-3b	16-Aug-01	16-18		<0.03	<0.059	<0.059	<0.18	
B-3c	16-Aug-01	22-24		<0.03	<0.059	<0.059	<0.179	
B-4a	16-Aug-01	8-10		<0.029	<0.059	<0.059	<0.179	
B-4b	16-Aug-01	16-18		<0.029	<0.057	<0.057	<0.179	
B-4c	16-Aug-01	20-22		0.034	<0.066	<0.066	<0.167	

Soil Analytical Results - BTEX and MTBE

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

					COCs and	f Tier 1 Soil Rei	mediation Obje	ctives
Tier	1 Exposure	Routes		Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SCGIER - Class I Groundwat	er			0.03	12	13	150	0.32
SCGIER - Class II Groundwa				0.17	29	19	150	0.32
Inhalation - Residential				0.8	650	400	320	8,800
Inhalation - Construction Wor	ker			2.2	42	58	5.6	140
Ingestion - Residential				12	16,000	7,800	16,000	780
Ingestion - Construction Work	ker			2,300	410,000 650	20,000 400	41,000 320	2,000
Soil Saturation Limit				870	000	400	320	0,000
Sample ID	Date Sampled	Sample Depth (feet bis)	PID Reading (ppm)					
B-5a	16-Aug-01	8-10		<0.028	<0.057	<0.057	<0.196	
B-5b	16-Aug-01	10-12		0.55	<0.058	<0.058	<0.167	
B-5c	16-Aug-01	22-24		<0.029	<0.057	<0.057	<0.178	
B-6a	16-Aug-01	2-4		<0.029	<0.059	<0.059	<0.167	
B-6b	16-Aug-01	16-18		<0.03	<0.060	<0.060	<0.179	
B-6c	16-Aug-01	20-22		<0.03	<0.059	<0.059	<0.017	
RW-1	11-Apr-05	4	1.3	<0.024	<0.059	<0.059	<0.12	<0.059
MP-1	11-Apr-05	5-7	0.8	<0.025	<0.062	<0.062	<0.12	< 0.062
MP-2	11-Apr-05	5-6	0.7	<0.024	<0.06	<0.06	<0.12	<0.06
MP-3	11-Apr-05	6-7	238	0.15	0.13	1.7	8.197	0.16
MP-4	11-Apr-05	5-6	24.5	<0.023	<0.059	<0.059	<0.12	< 0.059
SB-21/MW-21	12-Apr-05	2-3	5.1	<0.027	<0.067	<0.067	<0.2	< 0.067
SB-21/MVV-21 SB-22/MW-22	12-Apr-05	3	1.7	<0.025	< 0.063	<0.063	<0.19	<0.063
SB-24/MW-24	12-Apr-05	4-5	0.9	<0.024	< 0.059	<0.059	<0.18	<0.059
	12-Apr-05	4-5	0.6	<0.023	< 0.058	<0.058	<0.17	<0.058
SB-25/MW-25	12-Apr-05	4 5-6	5.3	<0.003	<0.074	< 0.074	<0.22	< 0.074
SB-26/MW-26	12-Apr-05	3-4	1.6	<0.023	<0.058	<0.058	<0.17	<0.058
SB-27/MW-27		5-7	0.6	< 0.020	<0.05	<0.05	<0.15	<0.05
SB-28	12-Apr-05	7-8	1.2	<0.02	<0.058	<0.058	<0.17	<0.058
SB-29	12-Apr-05			<0.023	<0.056	<0.056	<0.17	<0.056
SB-23/MW-23	15-Apr-05	4-5	1.3	<0.023	<0.059	<0.059	<0.17	<0.18
SB-30/MW-28	15-Apr-05	4-5	0.9	<0.024	<0.053	<0.057	<0.10	<0.057
SB-31	1-Jun-06	7-8	0.0			0.0731	0.731	<0.056
SB-41	2-Feb-09	4-5	901	0.289	0.619		70.1	<0.673
SB-41	2-Feb-09	5-8	>9,999	1.4	29.3	13.3 <0.059	<0.177	<0.073
SB-42	2-Feb-09	2-3	0.0	<0.0236	<0.059	1	0.722	<0.0537
SB-42	2-Feb-09	6-8	629	0.0616	0.378	0.101	<0.174	<0.058
SB-43	2-Feb-09	4-5	33.7	<0.0232	<0.058	<0.058	J	<0.058 0.219
SB-43	2-Feb-09	6-8	70.8	0.192	0.0798	1.24	6	<0.0572
SB-44	2-Feb-09	2-4	38.1	<0.0229	<0.0572	<0.0572	<0.171	<0.0572 30.1
SB-44	2-Feb-09	6-8	9,914	104	1,000	294	1,530	<u> </u>
SB-45	2-Feb-09	4-5	7.8	<0.0233	<0.0581	<0.0581	<0.174	
SB-45	2-Feb-09	5-7	16.0	<0.0234	<0.0585	<0.0585	<0.176	<0.0585
SB-46	2-Feb-09	1.5-2	11.4	<0.0237	<0.0593	<0.0593	<0.178	< 0.0593
SB-46	2-Feb-09	6-8	314	<0.023	<0.0576	0.245	0.461	0.116
SB-47	2-Feb-09	2-4	0.6	<0.0227	<0.0567	<0.0567	<0.17	<0.0567
SB-47	2-Feb-09	6-8	6.8	0.0362	<0.058	<0.058	<0.174	0.108
SB-48	2-Feb-09	2-4	0.0	<0.028	<0.0701	<0.0701	<0.21	<0.0701
SB-48	2-Feb-09	6-8	>9,999	0.112	0.94	0.557	3.51	<0.0577
SB-49	2-Feb-09	3-4	63.7	0.709	2.48	0.175	2.57	<0.0573
SB-49	2-Feb-09	4-8	7,109	12.7	143	46.8	246	2.92
SB-50	2-Feb-09	5-8	8.5	<0.0268	<0.0669	<0.0669	<0.201	<0.0669

Notes: 1) SCGIER = soil component of the groundwater ingestion exposure route; PID = photoionization detector; COCs = constituents of concern 2) mg/kg = milligrams per kilogram; ppm = parts per million; bIs = below land surface 3) <0.065 = concentration less than the laboratory reporting limit 4) Bold = a concentration above the Tier 1 soil remediation objective(s) established in 35 Illinois Administrative Code Part 742 5) All soil samples were analyzed for methyl tertiary butyl ether (MTBE) and/or benzene, toluene, ethylbenzene, and total xylenes (BTEX) using United States Environmental Protection Agency Method 8020 or 8021 0) Objective = a set semicable as the one is general to a base here recempted

6) Shading = not applicable or the soil sample location has been resampled

Dual Phase Extraction Pilot Test Results

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

est Well: RV		Initial DTP (fe		Initial DTW (f		Stack Diameter (in			Distanc	e from extrac	tion well RV	I-1 (feet)		
est Date: M	ay 12, 2005	Final DTP (fee	et): NA	Final DTW (fe	et): NA	Liquids Recovered	(gallons): 255	6	6	12	12	24	63	
Time hours	Elapsed Time minutes	Test Well Vacuum in, Hg	Test Well Vacuum psi	Air Flow acfm	PID ppm	Time Sample Collected hours	Total Liquids Recovered gallons	MP-1	MW-4	MP-2	MP-4	MP-3	MW-27	
						1	Initial DTP (feet):	2-	0.00.20		11. 1120	41, 1420	10, 1120	Comments
					-		Initial DTW (feet):	5.13	8.15	5.36	5.93	5.93	7.64	
9:06						T	Initial Pressure:	0	+0.05	+0.05	0	0	0	
9:10	04	18.32	9.00					0.05		0.5				Started pilot test
9:15	09	14.76	7.25	16.36	6,5			0.05	1.4	2.5	0.025	0.05	0	
9:30	24	13.23	6.50	16.91	5.0	100000		0.025	0.575	2,75	0.025	0.05	0.05	
9:50	44	12.22	6.00	18.54	4.9			0.025	0.25	3.00	0.025	0.05	0.05	
10:15	69	11.20	5.50	17.45	5.2			0.025	0.15	2.50	0.025	0.025	0.025	
10:35	89	10.69	5.25	18.54	4.1			0.025	0.125	2.50	0.025	0.05	0.025	
10:50	104	11.71	5.75	17.45	4.6			0.05	0.50	2.25	0.05	0.05	0.025	
11:00	114	11.71	5.75	18.54	3.7			0.05	0.35	2.25	0.05	0.025	0.025	
11:30	144	11.71	5.75	17.45	5.1			0.05	0.175	2,25	0.05	0.020	0.025	
12:15	189	11.20	5.50	17.45	3.1	12:15	255	0.05	0.25	2.00	0.025	0.05	0.025	Stopped pilot test
							Final DTP (feet):							
							Final DTW (feet):	5.9	8.88	5.76	6.41	6.24	7.73	

Notes:

1) ppm = parts per million

2) acfm = actual cubic feet per minute

3) in. Hg = inches of mercury

4) psi = pounds per square inch

5) DTW = depth to water; DTP = depth to product

6) Assume all readings on the observation wells are in H₂0 vacuum, unless noted with a plus sign (+), which indicates pressure

7) NP, NA, or shading = not present or not applicable

8) PID = photoionization detector

9) Test Well Vacuum (psi) measurements collected from the influent air stream using a flow meter provided by TriCore

Pounds of Total BTEX and MTBE Extracted by the Pilot Test

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

	Operation	Air		Groundwater	Influent Total	Mass	of BTEX and	MTBE Rem	loved	Cumulative BTEX	Cumulative VOCs
Operation Time	Time (minutes)	Flow (acfm)	PID (ppm)	Extracted (gallons)	BTEX and MTBE (µg/L)	Liquid (pounds)	Dissolved (pounds)	Vapor (pounds)	Total (pounds)	and MTBE Removed (pounds)	Removed (pounds)
9:06										<u> </u>	(poundo)
9:10	4					0	0.0000	0.00000	0.00000	0.00000	0.0000
9:15	9	16.36	6.5			0	0.0000	0.00005	0.00005	0.00005	0.0001
9:30	24	16.91	5.0			0	0.0000	0.00014	0.00014	0.00020	0.0004
9:50	44	18.54	4.9			0	0.0000	0.00029	0.00029	0.00049	
10:15	69	17.45	5.2			0	0.0000	0.00043	0.00043	0.00092	0.0008
10:35	89	18.54	4.1			0	0.0000	0.00059	0.00043		0.0011
10:50	104	17.45	4.6			0	0.0000	0.00059		0.00151	0.0016
11:00	114	18.54	3.7			0			0.00065	0.00216	0.0017
11:30	144	17.45	5.1			<u> </u>	0.0000	0.00075	0.00075	0.00291	0.0020
12:15	189	17.45	3.1	055		0	0.0000	0.00090	0.00090	0.00381	0.0024
	103	17.40	<u>3.1</u>	255	597.7	0	0.0013	0.00118	0.00245	0.00626	0.0031

Notes:

1) cfm = cubic feet per minute

2) ppm = parts per million

3) µg/L = micrograms per Liter

4) Influent Total benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) data taken from analytical laboratory results from the groundwater samples collected from RW-1 on April 21, 2005

5) PID = photoionization detector

6) shading = not applicable

7) VOCs = volatile organic compounds

Equations:

dissolved BTEX and MTBE removed (lbs) = gw extracted (gal) * sum of the influent total BTEX and MTBE (µg/L) * (3.78 L/1 gal) * (1 lb/4.53e8 µg) vapor BTEX and MTBE removed (lbs) = sum of the vapor removed for each individual compound (lbs)

vapor individual compound removed (lbs) = air bag concentration (ppmv)/10⁶ (ppmv) * molecular weight of compound (lb/lb-mole) * 1/379.5 (scf/lb-mole) * air flow (cfm) * operation time (min) VOCs removed (lbs) = TPH air bag concentration (ppmv)/10⁶ (ppmv) * molecular weight of compound (lb/lb-mole) * 1/379.5 (scf/lb-mole) * air flow (cfm) * operation time (min)

Conversions

<u>s:</u>			Molecular Weights:	
1 gallon =	3.785412	liters	Benzene =	78.11
1 pound =	453,600,000	μg	Toluene =	92.14
1 pound =	453,600	mg	Ethylbenzene =	106.16
1 feet ³ =	0.028316847	meter ³	Total Xylenes =	106.16
1 lb-mole =	379.5	scf	MTBE =	88.15
			TPH =	86.18

Air Bag Analytical Results

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

Sample ID	Date Sampled	Time Sampled		Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	MTBE (ppmv)	TPH (ppmv)	Methane (ppmv)
RW-1 - Stack	12-May-05	12:15 PM	0.96	<0.1	<0.1	<0.3	<0.1	4.20	125.00

Notes:

1) The air sample was analyzed for benzene, toluene, ethylbenzene, total xylenes, methyl tert-butyl ether (MTBE), and total petroleum hydrocarbons (TPH) using United States Environmental Protection Agency (USEPA) Method TO-14 Source

2) The air was analyzed for methane using USEPA Method TO-3 Air

3) ppmv = parts per million by volume

APPENDIX A

ANALYTICAL LABORATORY REPORTS AND CERTIFICATIONS - SOIL

ace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:	Section C				Par	ge: 1 of 1
Company: TriCore Environmental, LLC	Report To: Marcos I, Czako	Attention: Shawn Roc	leck		REGULAT		
Address: 1800 W. Hawthome Lane, Suite P	Сору То:	Company Name:	riCore Environmental, LLC		T NPDES T GROUND WA	and a second with the second second second	
West Chicago, Illinois 60185		Address:	awthorne Lane, Suite P				OTHER
Email To: miczako@comcast.net	Purchase Order No.: 100018	Pace Quote Reference:	awmome Lane, Suite P				
Phone: 630-520-9973 Fax 630-520-9976	Project Name: Former Clark #646	Pace Project Manager:		· · · · · ·			WI TOTHER
Requested Due Date/TAT: standard	Project Number: 100018	Pace Profile #:			Filtered (Y/N)	111	////
	SL G	DATE TIME	COMPOSITE ENDIGRAB WOLD 3100 DATE TIME 1/18/07 1/18/07 1/18/07 1/14/0	3 3 3 3 3 3			25 26 26 26 26 26 26 26 26 26 26
			1/18/07 /025	3 3	X X X DO(Y N	
	SL G		1/18/07 1/50 1/19/07 1/845	3 3	$\times \times \times $ $\mathcal{D}\mathcal{O}$	5 N_	V C.P
6 <u>M P - 1</u> 7 M W - 1 1 S	WT G		**	5 1 1 3	X X X X X OU	GNO	2-2-50m C, 3-Yor
8 M W - 2	WT G			5 1 1 3	X X X X X 00		
9 M W - 2 6	WT G		14 1200	5 1 1 3	X		
M W - 1 8	WT G		1/m/07 520 1/m/07 1307	5 1 .1 3 5 1 1 3	X	29 N 19 N	
12						┿╉╼╂	
Additional Comments:	RELINQUISHED	BY / AFFILIATION	DATE	ACCEPTED BY / AFFILIATION		SAMPLI	E CONDITIONS
	Zzek	9-10	1/12/07 1510	Arth men 11	19/57 50		N/X N/X
	Junto	may 1	119/07 100	PPS	/ /		N/X N/X
	- P.05		1/2007 1150	, MbAS	1/20/07 1150	1.0	NO NA NA
	·	PRINT Nam	ER NAME AND SIGNATURE 10 of SAMPLER: E of SAMPLER:	s I. Czako		Temp in °C	Received on Y Ice Custody Y Sealed Cooler Y Samples Intact Y

يها .

Sa	mple Conditio	n Upon Receipt	
Pace Analytical Client Name	: TRICC	PRE 1	Project #8 80335
Courier: Fed Ex UPS USPS Clie Tracking #:	ent Commercial	Pace Other <i>P</i>	<u>25</u>
Custody Seal on Cooler/Box Present: yes	🗌 no 🛛 Seal	s intact: yes	no data da anti-
Packing Material: Dubble Wrap	e Bags 🗌 None	Other	
Thermometer Used JB	Type of Ice: (We	Blue None	Samples on ice, cooling process has begun
Cooler Temperature	Biological Tissue	e is Frozen: Yes No	Date and initials of person examining contents: <u>MA -20 07</u>
Temp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	CIYES ONO ON/A	1.	
Chain of Custody Filled Out:		2.	
Chain of Custody Relinquished:		3.	
Sampler Name & Signature on COC:		4.	
Samples Arrived within Hold Time:		5.	
Short Hold Time Analysis (<72hr):		6.	
Rush Turn Around Time Requested:	Ves No N/A	7. S'day TAT	-
Sufficient Volume:	Dres DNO DN/A	8.	
Correct Containers Used:	Fires ONO ON/A	9.	
-Pace Containers Used:			
Containers Intact:	ØYes ONO ON/Ą	10	
Filtered volume received for Dissolved tests	DYes DNo DNIA	11.	
Sample Labels match COC:	ZYes DNO DN/A	12.	
-Includes date/time/ID/Analysis Matrix:	3/41		
All containers needing preservation have been checked.	ØYes DNo DN/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Tyes DNO DN/A		_ot # of added
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No		preservative
Samples checked for dechlorination:	□Yes □No □N/A	14.	
Headspace in VOA Vials (>6mm):	DYes DNO DN/A	15.	
Trip Blank Present:		16.	
Trip Blank Custody Seals Present	TYes No NA		
Pace Trip Blank Lot # (if purchased):			:
Client Notification/ Resolution:		F	ield Data Required? Y / N
-	DateЛ		
Person Contacted: Comments/ Resolution:			
· ····			
Project Manager Review:	2	an a	Date: 1-2207
Npte: Whenever there is a discrepancy affecting North Ca Certification Office (i.e. out of hold, incorrect preservative,	rolina compliance sam out of temp, incorrect o	bles, a copy of this form will b containers)	e sent to the North Carolina DEHNR

•

-

Ч.

F-ALLC003rev.3, 11September2006

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent diffense after conviction hereunder is a Class 3 felony (415 ILCS 5/57.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

880335

(initial)

(initial)

(initial)

(initial)

(initial)

(initial)

A. Site Identification

	IEMA Incident#:	892744, 903199	_ IEPA LPC# (10-digit):	0971855024	
	Site Name: Forn	ner Clark Retail Stat	tion #646	<u></u>	
		.O. Box):399 West Libe			
		C		ZIP Code:600	34
B.	Sample Collector				
	I certify that:				
		mpling equipment/metho sentative samples.	ods were utilized		(initial)
	2. Chain-of-custo	dy procedures were follo	owed in the field.		NEC

- 3. Sample integrity was maintained by proper preservation.
- 4. All samples were properly labeled.

C. Laboratory Representative

I certify that:

- 1. Proper chain-of-custody procedures were followed as documented on the chain-of-custody forms
- 2. Sample integrity was maintained by proper preservation.
- 3. All samples were properly labeled.

Laboratory Certification for Chemical Analysis 1 of 2

680335

4.	Quality assurance/quality control procedures were established and carried out.	(initial)
5.	Sample holding times were not exceeded.	(initial)
б.	SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.	(initial)
7.	An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003).	(initial)

D. Signatures

I hereby affirm that all information contained in this form is true and accurate to the best of my knowledge and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sample Collector

Name: <u>Marcos I. Czako</u>

Title:

Company: TriCore Environmental, LLC

Address: 1800 West Hawthorne Lane, Suite P

City, State, ZIP: West Chicago, Illinois 60185

Phone: 630-520-9973

Signature: C 228 Date: /

Laboratory Representative

Name: Title: Company: Address: 54302 City, State, ZIP: Phone: joes D. l Signature: 1126 Date:

Páce Analytical®

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 880335

Client: TRICORE ENVIRONMENTAL, LLC.

Project Name: FORMER CLARK #646

Lab Contact: Laurie Woelfel Collected By: MARCOS CZAKO Report Serial No: 880335012920070833

Project Number: 100018

Lab Sample Number	Field ID	Matrix	Collection Date
880335-001	SB-33 @ 10-11	SOIL	01/18/07 13:20
880335-002	SB-34 @ 8-10	SOIL	01/18/07 18:19
880335-003	SB-35 @ 8-10	SOIL	01/18/07 16:40
880335-004	SB-36 @ 10-11	SOIL	01/18/07 10:25
880335-005	SB-37 @ 6-8	SOIL	01/18/07 11:50
880335-006	MP-1	WATER	01/19/07 13:45
880335-007	MW-11S	WATER	01/19/07 14:05
880335-008	MW-2	WATER	01/19/07 13:35
880335-009	MW-26	WATER	01/19/07 13:20
880335-010	MW-18	WATER	01/19/07 13:07

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

ario abell

Approval Signature

Date

Pace Analytical Services, Inc.

Analytical Report Number: 880335

í.

Client :	TRICORE ENVIRONMENTAL, LLC.	Matrix Type :	SOIL
	FORMER CLARK #646	Collection Date :	01/18/07
Project Number :		Report Date :	
Field ID :	SB-33 @ 10-11	Lab Sample Number :	880335-001

Ć

INORGANICS

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic		2.8	2.4	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Barium		6.4	0.59	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Cadmium	<	0.59	0.59	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Chromium		3.9	0.59	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Lead		2.2	0.89	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Mercury		0.012	0.012	1	mg/Kg		01/25/07	SW846 7471A	SW846 7471A
Selenium	<	2.4	2.4	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Silver	<	1.2	1.2	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
COD - Soluble		3200	1200	1	mg/L		01/24/07	EPA 410.4	EPA 410.4
Percent Solids		84.7	,	1	%		01/23/07	SM M2540G	SM M2540G
TPH - GASOLINE		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> ,,,,,,,,		Prep Date:	01/24/07				
Analyte	R	lesult	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
TPH - Gasoline	< 1	2	12	50	mg/Kg		01/24/07	SW846 5030B	SW846 M8015

Pace Analytical Services, Inc.

Analytical Report Number: 880335

1241 Bellevue Street Green Bay, ŴI 54302 920-469-2436

Matrix Type: SOIL

Collection Date: 01/18/07

Lab Sample Number: 880335-002

Report Date: 01/26/07

Client: TRICORE ENVIRONMENTAL, LLC. Project Name: FORMER CLARK #646 Project Number: 100018 Field ID: SB-34 @ 8-10

Ć

INORGANICS

INORGANICS						- ·		Duan Mothod	Anl Method
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	
Arsenic	<	2.4	2.4	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Barium		3.6	0.61	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
	<	0.61	0.61	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Cadmium		3.1	0.61	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Chromium		2.0	0.91	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Lead	<	0.012	0.012	1	mg/Kg		01/25/07	SW846 7471A	SW846 7471A
Mercury		2,4	2.4	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Selenium			2.4 1.2	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Silver	<	1.2		1	mg/L		01/24/07	EPA 410.4	EPA 410.4
COD - Soluble		1700	1200	1	%		01/23/07	SM M2540G	SM M2540G
Percent Solids		82.1			70		01720101		
TPH - GASOLINE				Prep Date:	01/24/07				
	F	Result	EQL	Dil	. Units	Cód	e Ani Date	Prep Method	Anl Method
Analyte				50	mg/Kg		01/24/07	SW846 5030B	SW846 M8015
TPH - Gasoline	1	6	12	50	ng/Ng		0.1.2.1.01		

Analytical Report Number: 880335

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type: SOIL

Collection Date: 01/18/07

Lab Sample Number: 880335-003

Report Date: 01/26/07

Client: TRICORE ENVIRONMENTAL, LLC. Project Name: FORMER CLARK #646 Project Number: 100018 Field ID: SB-35 @ 8-10

INORGANICS

Pace Analytical

Services, Inc.

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	2.5	2.5	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Barium		4.3	0.63	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Cadmium	<	0.63	0.63	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Chromium		3.1	0.63	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Lead		2.1	0.95	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Mercury	<	0.013	0.013	1	mg/Kg		01/25/07	SW846 7471A	SW846 7471A
Selenium	<	2.5	2.5	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Silver	<	1.3	1.3	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
COD - Soluble		2000	1300	1	mg/L		01/24/07	EPA 410.4	EPA 410.4
Percent Solids		79.2		1	%		01/23/07	SM M2540G	SM M2540G
TPH - GASOLINE				Prep Date:	01/24/07				
Analyte	R	esult	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
TPH - Gasoline	< 13	3	13	50	mg/Kg		01/24/07	SW846 5030B	SW846 M8015

Pace Analytical Services, Inc.

(Analytical Report Number: 880335

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

> SOIL 01/18/07 01/26/07 880335-004

Client	TRICORE ENVIRONMENTAL, LLC.	Matrix Type :
Project Name	FORMER CLARK #646	Collection Date :
Project Number	100018	Report Date :
- Field ID	SB-36 @ 10-11	Lab Sample Number :

INORGANICS

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic		5.3	2.3	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Barium		31	0.58	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Cadmium	<	0.58	0.58	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Chromium		15	0.58	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Lead		6.2	0.87	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Mercury	<	0.012	0.012	1	mg/Kg		01/25/07	SW846 7471A	SW846 7471A
Selenium	<	2.3	2.3	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Silver	<	1.2	1.2	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
COD - Soluble		5900	1200	1	mg/L		01/24/07	EPA 410.4	EPA 410.4
Percent Solids		86.4		1	%		01/23/07	SM M2540G	SM M2540G
TPH - GASOLINE				Prep Date:	01/24/07				
Analyte	R	esult	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
TPH - Gasoline	< 12	2	12	50	mg/Kg		01/24/07	SW846 5030B	SW846 M8015

Matrix Type: SOIL

Collection Date : 01/18/07 Report Date : 01/26/07

Lab Sample Number: 880335-005

Pace Analytical Services, Inc.

Client : TRICORE ENVIRONMENTAL, LLC. Project Name : FORMER CLARK #646 Project Number : 100018 Field ID : SB-37 @ 6-8

INORGANICS

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	2.3	2.3	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Barium		41	0.58	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Cadmium	<	0.58	0.58	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Chromium		18	0.58	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Lead		7.6	0.86	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Mercury		0.017	0.012	1	mg/Kg		01/25/07	SW846 7471A	SW846 7471A
Selenium	<	2.3	2.3	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
Silver	<	1.2	1.2	1	mg/Kg		01/24/07	SW846 3050B	SW846 6010B
COD - Soluble		4200	1200	1	mg/L	N	01/24/07	EPA 410.4	EPA 410.4
Percent Solids		86.8		1	%		01/23/07	SM M2540G	SM M2540G
TPH - GASOLINE	Prep Date: 01/24/07								
Analyte	R	esult	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
TPH - Gasoline	< 12	2	12	50	mg/Kg		01/24/07	SW846 5030B	SW846 M8015
Pace Analytical Services, Inc.

(_____

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupID	Field ID	Comment
880335-002	TPHGAS-S	SB-34 @ 8-10	Sample exhibits hydrocarbon pattern resembling weathered gasoline.
880335-006	TPHGAS-W	MW-1	Sample exhibits hydrocarbon pattern resembling gasoline.
880335-008	TPHGAS-W	MW-2	Sample exhibits hydrocarbon pattern resembling gasoline.

(____

Qualifier Codes

Ĺ

(______.

Flag	Applies To	Explanation
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
É	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
j	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
<	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
-	All	Elevated detection limit due to low sample volume.
1	Organic	Sample pH was greater than 2
Į	All	Spiked sample recovery not within control limits.
)	Organic	Sample received overweight.
0	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Ç	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
5	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
J	All	The analyte was not detected at or above the reporting limit.
/	All	Sample received with headspace.
V	All	A second aliquot of sample was analyzed from a container with headspace.
	All	See Sample Narrative.
	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
	All	Laboratory Control Spike recovery not within control limits.
	All	Precision not within control limits.
	Inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
	All	The analyte was not detected at or above the reporting limit.
	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
		BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
		BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
i		BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
		BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
3	Inorganic	Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.
		Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample preparation.
		Page

Pace Analytical Services, Inc.

Analysis Summary by Laboratory

Test Group Name	880335-001	880335-002	880335-003	880335-004	880335-005	880335-006	880335-007	880335-008	880335-009	880335-010	
ARSENIC	В	В	В	В	В	В	В	В	В	В	
BARIUM	В	В	В	В	В	В	В	В	В	в	
CADMIUM	В	В	в	В	В	В	В	В	В	в	
CHROMIUM	В	В	В	В	В	В	В	В	В	В	
COD						В	В	В	В	В	
COD - SOLUBLE	В	В	В	В	В						
LEAD	В	В	В	В	В	В	В	B	В	В	
MERCURY	В	В	В	В	В	В	В	В	В	В	
NITROGEN, TOTAL KJELDAHL						В	В	В	В	В	
PERCENT SOLIDS	В	В	В	В	В						
PHOSPHORUS, TOTAL						В	В	В	В	В	
SELENIUM	В	в	В	В	В	В	В	В	В	В	
SILVER	В	В	В	В	В	В	В	В	В	В	
TPH - GASOLINE	G	G	G	G	G	G	G	G	G	G	

Code	Facility	Address	IL Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	200050
G	Green Bay Lab (Industrial Dr)	. 1795 Industrial Drive Green Bay, WI 54302	200051

Pace Analy Services, Ir		i								QC	Su	mm	ary								1241 Green 920-4 Fax: 9	i B <mark>ay</mark> , 69-24:	WI 54 36	1302
Batch:		880)335											ас туре	Clier	it Samj			Loh		~			
Lab Section:		ME	TALS										-	MB		MTG20				Sample I	·····			
QC Batch Nu	umbe	er: 178	320													SMTG20				MTG208				
Prep Method	1:	SM	/846 3	050B										MS		3 @ 10				SMTG208				
Analytical Me			/846 6											NSD			-11MS)		35-001M 35-001M	-			
Client Sample IC SB-33 @ 10-11 SB-35 @ 8-10 SB-37 @ 6-8)		Lab Sar 880335-0 880335-0 880335-0	01 03	MB I MB MB MB	D			SB-	ent Sa 34 @ 8 36 @ 1		ÍD		Lab Sa 880335 880335		MB MB MB	ID							
Test Name		Method Blank Result	LCS Spiked	LCSE	Recovery	LCSD			LCS/ LCSD	Co	CS/LCS	nits	Parent	Parent	MS			MSD			MS/ MSD	1	MS/MS	
······		Conc	Солс	Conc	Vectivery % C	Spiked Conc	LCSD R Conc	ecovery % (LCL %	UCL %	RPD %	Sample	Result			ecovery	Spiked	MSD	Recovery	RPD	LCL	UCL	F
Arsenic	<	0.84	50.0	49.9	99.8					80	120	20	Number 880335-001	Con 2,85		Conc	% (Сопс	% C	% C	1	%	
Barium	<	0.1	50.0	48,9	97.7					80	120	20	880335-001	6.38		60.5	97.7	59.0	61.6	99.6	1.8	75	125	T
	<	0.051	50.0	49.7	99.5					80	120	20	880335-001	< 0.06		65 54.3	99.4	59.0	65.7	100.6	1.1	75	125	
		0.15	50.0	51.7	103.4					80	120	20	880335-001	3.86		54.3 62.8	91.9 99.8	59.0	55.3	93.7	1.9	75	125	
Chromium	<			50,2	100.3					80	120	20	880335-001	2.23		57.8	99.8	59.0	63.9	101.7	1.7	75	125	
Cadmium Chromium Lead	< <	0.34	50.0	00,2												57.0	94,2	59.0	58.5	95.3	1.2	75	125	
Chromium Lead Selenium	< < <	0.81	50.0 50.0	49.4	98.7					80	120	20	880335-001		50.0	671	07.0			<u> </u>		10	140	1
Chromium Lead	< < < <				· · · · ·					80 80	120	20 20	880335-001 880335-001	< 0.96		57.4 29.9	97.2 101.2	59.0 29.5	58.3 30.3	98.8	1.6	75	125	

Conc = mg/Kg unless otherwise noted

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Report Date: 1/26/2007

QC Batch Number: 17820

Page 19

Pace Analytical Services, Inc.				QC Summ	ary		Greer 920-4	Bellevue Street 1 Bay, WI 54302 69-2436 920-469-8827
Batch: Lab Section: QC Batch Number: Prep Method: Analytical Method:	SW846 5030B				QC Type MB LCS LCSD MS	Client Sample ID GG2129-5MB GG2129-5MBLCS GG2129-5MBLCSD SB-33 @ 10-11MS	Lab Sample ID GG2129-5MB GG2129-5MBLCS GG2129-5MBLCSD 880335-001MS	
Client Sample ID SB-33 @ 10-11 SB-35 @ 8-10 SB-37 @ 6-8	SW846 M8015E Lab Sample ID 880335-001 880335-003 880335-005	5 MB ID MB MB MB		Client Sample ID SB-34 @ 8-10 SB-36 @ 10-11	MSD Lab San 880335-00 880335-00	SB-33 @ 10-11MSD nple ID MB ID 02 MB	880335-001MSD	
Test Name Re	thod ank LCS sult Spiked LCS Re Conc Conc 2.6 50.0 57.5	ecovery Spiked % C Conc 115 50.0	LCSD Recovery Conc % C 55.5 111		Parent Sample Number 880335-001 5.70	MS Spiked MS Recovery Conc Conc % C 59.0 63 97	MSD MS/ Spiked MSD Recovery RPD Conc Conc % C % C 59.0 64.4 99 2.2	MS/MSD Control Limit LCL UCL R % % 54 116

Conc = mg/Kg unless otherwise noted

C = QC Code, see Qualifer Sheet

 $\sum_{i=1}^{n} (i)$

Parent Result is reported down to MDL in order to allow Validation of this worksheet

QC Batch Number: 17832 The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Report Date: 1/26/2007

Page 21

Pace Analytica Services, Inc.	1							C	C S	umm	nary						Greer 920-4	i Bay, ' 69-243	ue Street WI 54302 6 9-8827
Batch: Lab Section: QC Batch Numbe Prep Method: Analytical Method	WE er: 178 EP)335 TCHE 344 A 410.4 A 410.4	4		. 6 <u></u>		, , , , , , , , , , , , , , , , , , , 					QC Type MB LCS MS MSD	WCG WCG SB-37	t Sample ID 1928-100MB 1928-100MBLC 7 @ 6-8MS 7 @ 6-8MSD	cs	Lab Sample I WCG1928-100 WCG1928-100 880335-005M 880335-005M	D OMB OMBLCS S		
Client Sample ID SB-33 @ 10-11 SB-35 @ 8-10 SB-37 @ 6-8		Lab Sar 880335-0 880335-0 880335-0	01 03	MB II MB MB MB	D			SB-3	nt Samp 34 @ 8-10 36 @ 10-1			Lab San 880335-0 880335-0	02	MB ID MB MB					
Test Name	Method Blank Result Conc	LCS Spiked Conc	Conc	ecovery % C	LCSD Spiked Conc	LCSD F Conc	Recovery % C	LCS/ LCSD RPD % C	Contro	LCSD DI Limits CL RPD % %	– Parent Sample Number		MS Spiked Conc	MS Recovery Conc % C	MSD Spiked Conc	MSD Recovery Conc % C	MS/ MSD RPD %		MS/MSD ontrol Limits UCL RI %
COD - Soluble <	17	400.000	405.9	101.5					80 1	20 20	880335-00	5 4200.38	11515.0	22069.9 155.2 N	11515.0	24303.9 174.6 N	1	80	120 2

Conc = mg/L unless otherwise noted C = QC Code, see Qualifer Sheet Parent Result is reported down to MDL in order to allow Validation of this worksheet The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Report Date: 1/26/2007

QC Batch Number: 17844

Page 23

Pace Analytical Services, Inc.					C	QC Sum	mary					Green E 920-469	ellevue Street Bay, WI 54302 9-2436 10-469-8827
Lab Section: QC Batch Number: Prep Method:	880335 METALS 17864 SW846 74 SW846 74							QC Type MB LCS MS MSD	MBSM LCSS 88032	t Sample ID MTG2111-12 MTG2111-12 28-001MS 28-001MSD	Lab Sample IE MBSMTG2111 LCSSMTG211 880328-001MS 880328-001MS	1-12 1-12 S	-
Client Sample ID SB-33 @ 10-11 SB-35 @ 8-10 SB-37 @ 6-8	Lab San 880335-0 880335-0 880335-0	mple ID N 001 N 003 N	MB ID MB MB MB		SB-3	nt Sample ID 34 @ 8-10 36 @ 10-11		Lab San 880335-00 880335-00	002	MB ID MB MB			
Test Name Rei	thod ank LCS sult Spiked Conc Conc 10015 0.25	LCS Recov Conc % 0.24 97.8	6 C Conc	LCSD Recovery Conc % (LCS/ LCSD y RPD C % C	LCS/LCSD Control Limit LCL UCL R % %	s Pare	ole Result	MS Spiked Conc	MSD MS Recovery Conc % C Conc		MS/ MSD RPD % C	MS/MSD Control Limits LCL UCL RPD % % %

Conc = mg/Kg unless otherwise noted

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Report Date: 1/26/2007

QC Batch Number: 17864

SUBURBAN LAB	ORATORIES, In			CUSTODY RECOR	LD #
Company Name	60162 Tel. 708.544.32		Toll Free: 800.783.1	LABS www.suburbanlabs.c	om
TriCore Environmental, LLC Company Address				ANALYSIS & METHOD REQUESTE	
Company Address Law Inon Mental, Inc. 1800 W. Hawthorne Lane, Suith City State West Chicago IL Phone Fax 630-520-9973 1030-520	eP	Normal 🗆 RUS	H* *Additional Rush Charges Approved.	Enter an "X" in box below for reque	$\frac{PO No.}{1000/9}$
West Chicago IL	21p 100185	*Date & Time Needed:			Shipping Method
630-520-9973 630-520	0-9976 G Fax Repo		st work. Rush work must be pre-		QC Reporting Level (Please Circle) 1 2 3
Email Address Miczako C ComCast. net	Ema	il Specify Regulatory Program			
Project ID / Location		LUST SRP		120	LAB-USE ONLY
100019/Wavconda Project Manager (Report to)	n	503 Sludge 🗆 NPD	7		SLIORDER HOUCE 57
Marcas - Crako Sample Collector(s)				te	QC sample(s)
Marcos I. Czakó		🔲 Disposal 🔲 Othe	r* *Please specify in comment section below.	hke	Received Samples
SAMPLE IDENTIFICATION	COLLECTION	GRAB/ CONTAIN	-RS	491	Samples received within 6
Use One Line Per Preservation & Container Type		TRIX COMP. Qty SIZE &	I.	0	R Condition Spin LAB #
1 58-33 @ 10'-11'	1 118107 1320 5				
2			<u>, , , , , , , , , , , , , , , , , , , </u>		
3					 Antimi C. Statistical Control of the statistical stat
4					
5					
	1 1				
6	1 1				
7	1 1.				
8	1 1				
9					
10					
11					
12					
Waste Water (WW), Surface Water (SW),	TS & SPECIAL INSTRUCTION	NS:			CONDITION CODES
Ground Water (GW), Solid Waste (WA), Sludge (U), Wipe (P) CONTAINER: 202					1. improper/damaged container/cap 2. Improper preservation
4az, 8oz, 40ml Vial, 500ml, Liter (L), Tube,					3. Insufficient sample volume
Glass (G), Plastic (P) PRESERVATIVE:					 Headspace/air bubbles for VOCs Received past holding time
H₂SO₄, HCl, HNO₃, Methanol (MeOH) NaOH, Sodium Bisul <u>fate (</u> NaB <u>),</u> NaThio					6. Received frozen
1. Relingershold By Date	2. Relinquished By	Date	. Relinquished By	Dale 4. Relinquishe	7. Label conflicts with COC d By Date
Received By					Date .
Time /5-5	Received By		Received By	Time Received By	Time
Submission of samples subject to Terms and C	Conditions on back.	Rev, 01/01/0			
		1.ev. 01/0[/0		nginal (Return with report), Yellov	w - Lab Copy, Pink - Sampler Copy

.

SUBURBAN LABORATORIES, Inc.

4140 Litt Drive · Hillside, Illinois 60162-1183 Tel. (708) 544-3260 · Toll Free (800) 783-LABS · Fax (708) 544-8587 www.SuburbanLabs.com

January 23, 2007

Marcos Czako Tri_core Environmental 1800 W. Hawthorne Lane West Chicago, IL 60185

Tel: (630) 520-9973 Fax: (630) 520-9976

Lab Order: 07010657

Project Name: 100019 / Wauconda

Dear Marcos Czako:

Suburban Laboratories, Inc. received 1 sample(s) on 01/18/07 for the analyses presented in the following report.

All data for the associated quality control (QC) met EPA, method, or internal laboratory specifications except where noted in the case narrative. If you are comparing these results to external QC specifications or compliance limits and have any questions, please contact us.

This final report of laboratory analysis consists of this cover letter, case narrative, analytical report, dates report, and any accompanying documentation including, but not limited to, chain of custody records, raw data, and letters of explanation or reliance. This report may not be reproduced, except in full, without the prior written approval of Suburban Laboratories, Inc.

If you have any questions regarding these test results, please call your customer service representative at (708) 544-3260.

Sincerely,

Ene Jeggy

Eric Yeggy Project Manager

cc:

SUBURBAN LABORATORIES, Inc.

4140 Litt Drive · Hillside, Illinois 60162-1183 Tel. (708) 544-3260 · Toll Free (800) 783-LABS · Fax (708) 544-8587 www.SuburbanLabs.com

Client ID:	Tri_core Environmental			CASE NARRATIVE
Project Name:	100019 / Wauconda			
Lab Order:	07010657		Date: Jar	uary 23, 2007
Chain of Custody #	electronic		PO #:	
Temperature of samp	oles upon receipt in our Lab:	17 °C	QC Level: Le	vel I

General Comments:

- All results reported in wet weight unless otherwise indicated. (dry = Dry Weight)

- Sample results relate only to the analytes of interest tested and to sample as received by the laboratory.

- Environmental compliance sample results meet the requirements of 35 IAC Part 186 unless otherwise indicated.

- Accreditation by the State of Illinois is not an endorsement or a guarantee of the validity of data generated.

- For more information about the laboratories' scope of accreditation, please contact us at (708) 544-3260 or the Agency at (217) 782-6455.

Abbreviations:

- Reporting Limit: The reporting limit is designed to be the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

- J: The analyte was positively identified above our Method Detection Limit and is considered detectable and usable; however, the associated numerical value is the approximate concentration of the analyte in the sample.

- ATC: Automatic Temperature Correction. - TNTC: Too Numerous To Count

- In Laboratory: EPA recommends this analyte be analyzed "immediately" (e.g., tests that should be performed in the field within 15 minutes of collection). Analytes with "immediate" hold times are analyzed as soon as possible upon receipt by the laboratory.

- TIC: Tentatively Identified Compound (GCMS library search identification, concentration estimated to nearest internal standard).

Method References:

For a complete list of method references please contact us.

- E: USEPA Reference methods

- SW: USEPA, Test Methods for Evaluating Solid Waste (SW-846)

- M: Standard Methods for the Examination of Water and Wastewater

Project Specific Comments:

Suburban Laboratories, Inc.

4140 Litt Drive, Hillside, IL 60162 (708) 544-3260

Client ID: Tri core Environmental

Project Name: 100019 / Wauconda

Laboratory Results

Collection Date: 01/18/2007 1:20 PM

Report Date: January 23, 2007

Lab Order: 07010657

Matrix: SOIL

Client Sample ID: SB-33 @ 10' 11'

Date Received: 01/18/2007 3:55 PM Lab ID: 07010657-01A

Parameter	Result	Qual.	Report Limit	Units	Dilution Factor	Date Analyzed	Batch ID
TOTAL PLATE COUNT, MULTIPLE DILUTIO	NS		Method: M9215B-M	Idils		Analyst: CB	
1:10	23.0	с	0	CFU/g	1	01/19/2007 12:10 PM	R58594
1:100	6.00	c .	0	CFU/g	1	01/19/2007 12:10 PM	R58594
1:1000	5.00	с	0	CFU/g	1	01/19/2007 12:10 PM	R58594
1:10000	ND	С	0	CFU/g	1	01/19/2007 12:10 PM	R58594
1:10000	ND	С	0	CFU/g	1	01/19/2007 12:10 PM	R58594
1:1000000	ND	с	0	CFU/g	1	01/19/2007 12:10 PM	R58594
Final Result:	230		0	CFU/g	1	01/19/2007 12:10 PM	R58594

Qualifiers: BaseReport-MDL-ContFrac2004

- Value exceeds Maximum Contaminant Level
- Analyte not included in SLI scope of accreditation С
- Refer to case narrative page for specific comments G Analyte detected below quantitation limit (QL)
- Internal standard recovery is outside SLI in-house
- criteria (no method specific requirements exist)
- Analyte detected in the associated Method Blank В
- Estimated, analyte detected above quantitation range Ε
- Holding times for preparation or analysis exceeded Η
- Not Detected at the SLI Reporting Limit ND
- Spike Recovery outside accepted recovery limits S

ſ Q

*

ace Analytical **

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

i

14

Sectio Require		ent In	forme	ition:							tion i		ect In	form	tion:				ection C																				Р	age:	1 of	1
Compa	ny: T	riCor	e Envi	ironm	ental,	LLC			*****		ort To:							_	voice Infor Itention:	Shawn R			·····		·····			·····					seeder									
. Addre		_								Сор	y To:							c	ompany Ni	ame;	TriCore En		mental								-		NPD	ES	200 B 10		1949 Aug 1949	controls of the light of			South Street Court (1)	ATED
	v	Nest	Chica	go, III	inois 6	0185	5							*******				A	ddress:					·····				·		·,	-	ł	UST		∑:R		0 111	() [[(
Email	to: r	nicz	ako@	DCOI	ncasl	.net				Pur	chase	Otde	r No	.:	10001	3	·	P	ace Quote	Reference	Hawthorne :	Lane	s, suite	P				·			-				i (**			<u>r-1</u>		OTHE		-
Phone;	630-5	520-9	973	Fax	630-52	0-99	76			Proj	ject Nr	ame:	Fo	rmer	Clark #	646		9	ace Projec	t Manager											4		SIT							IN Ī.		
Reque	ited C	Due D)ate/T	AT:	sta	andar	ď	·····		Proj	ject Ni	umba	er:	100	018			P	ace Profile	r#:											-	CONTRACTOR OF	red (<u>п</u> Т.Т	он	∏ so 77				ER
	Sec	tion	S	SAN	equirer APL aracter	E I	D	ormat	ion	MAT DRIVING MATER MASTER PRODUCT	ng Nater 9 E Nater 1817		COL DR //1 N// P)E	andrige toolfar schedulin	CODE	SAMPLE TYPE	C=COMP		COLLE	ECTED	•		SAMPLE TEMP AT COLLECTION	# OF CONTAINERS			o _{rese}	rvəliv	es			Jeste		+			7	$f_{/}$		/	
ITEM #		5		(A-	Z, 0-9 MUST	1.)		JE		BOILIS GIL MPE AIR DTHER			机水炉积石石			MATRIX CODE	SAMPLE	GRAB	COLUPOSITE STA	ART]	COMPOSIT	E END.C	GRAB	NPLE T	F CONT	erved					5		/					//,		Strong C	39.18	67
Ë		·			<u> </u>		·····			TI\$SUE	1		73					5	DATE	TIME	DATE	17	TIME	SA	40	Unpreserved	tos.	HING HING	NaOH	Na ₂ S ₂ O ₃	Other		/8/		//	//			No.	"		Project No.
1	s	в	- 3	8	@		2	-	3				Ċ	20	1	SL		3		1	12/11/07		3;00		1	1		┺┼┹	3	2	<u> 0</u>		X	-	f		-	\mathbf{f}	2	1. 11		Lab I.D.
1.0	s	B	- 3	8	@	0	3	-	4				0	0	2	SL		G			12/11/07		3:10	·	1	1		- -	1	$\left \right $			x		+		+		N	1-9	02 F	[6
						_				_									_														<u> </u>		+			┼╌┠╴	<u>N</u>		V	
4						_														1										$\uparrow \uparrow$					+			┼╌┠	-	•·····		
	·			·																						$\uparrow \uparrow$			-	┢━╊					+			+				
6							Π													+					<u> </u>	+				┼─┼												
														1		-										+-				┼─┼								┼─┠				
ĸ						1							+-	+		-	- -				<u> </u>							_		+				-				 				
ç,							++	\rightarrow			┢╍┢		┽	+							<u> </u>																	,].		****		
1.00							+			+	┝╌┼										ļ		·····																			
10							┼╍┤			+-	┝─┼														ļ																· .	
				-							┝─┼										ļ		*****																			
12				1	LL.			<u> </u>						_					فالبوب وحفاده احم																T							
Additi	nai c	Comn	nents:											RI	er NC	UISI	HED	BY	AFFL	IATION			TI		ACCE	PTE	DB	YIF	\FFI	LIAT	ON		DA	TE		TIM		SAI	MPL	E CO	VDITIO	NS
														E	2		P	φ	ites_		1=/11/07	2	5'20	PR	F	EO	E	ĪX											T	Y.N	N.X.	NX
															Fe	50	ē	k			12/18/	1 1	110	· · ·	V	\overline{O}	B	och	m	r		1,	HI	4	-	1100		1-0		- Ro	Ø	NA N
																					T						<u> </u>		····							(10-		+	-	R R	1×	(A)
											-																					1			+-			+		YIN Y	Y'N Y	YIN Y
																				SAMPI.	ER NAME	ANL	A SIGN	IATURE:						n i giri A Danak								, i				- X
																					mo of SAMPLE			Marcos	s I. Cząk	D	-14-14-14-14						in Ale		give Mari			۳ ۲ ۲		Received an Ice	Custody Sealed Cooler	Samples Infact
																				SIGNATU	REOISAMPLE	IR:	Z	24	40	-			DA	TE Sign	11/04	27	m						10	Rece	Seale	Samp

e-File(ALLQ020rev.3,31Mar05))22Jun2005

Sa	mple Conc	lition	Upon Receipt		
Pace Analytical Client Name	: TRI	COR	E ENV.	Project#	891867
Courier: VFed Ex UPS USPS Clie Tracking #:			, 		
Custody Seal on Cooler/Box Present: yes			;		
	e Bags 🔲 N	_			ooling process has begun
Thermometer Used <u>J.B</u>	· · ·		Blue None	the second design of the secon	als of person examining
Cooler Temperature 1-0 Temp should be above freezing to 6°C			is Frozen: Yes No Comments:	contents:	12/14/67 KJC
Chain of Custody Present:	ETYes DNo	□n/A	1.		
Chain of Custody Filled Out:	¹ EYes □No		2.		
Chain of Custody Relinquished:					
Sampler Name & Signature on COC:	DYes INO				
Samples Arrived within Hold Time:	DYes DNo	⊡n/A	5.		
Short Hold Time Analysis (<72hr):	DYES DNO				
Rush Turn Around Time Requested:	PYes DNo	⊡n/a	7. 5 DAY TA	-1	
Sufficient Volume:		□n/A	8		
Correct Containers Used:	ØYes 🛛 No	□n/A	9.		
-Pace Containers Used:	ElYes DNo				
Containers Intact:	ØYes 🛛 No		10.	-	· · · · · · · · · · · · · · · · · · ·
Filtered volume received for Dissolved tests	□Yes □No	ENIA	11.		
Sample Labels match COC:	ÆYes □No	DN/A	12.		
-Includes date/time/ID/Analysis Matrix:	<u> </u>				
All containers needing preservation have been checked.	□Yes □No -	EIN/A	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No 2	1	nifial when	Lot # of added	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No		completed	preservative	
Samples checked for dechlorination:	DYes DNo 1		4.		
Headspace in VOA Vials (>6mm):	□Yes □No ↓	EIN/A	5.		
Trip Blank Present:	□Yes □No		6.		
Trip Blank Custody Seals Present	□Yes □No [
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:		Date/Ti	me:	Field Data Require	ď? Y / N
	•				<u> </u>
Project Manager Review:	Lu	<u>v</u>	· · ·	_ Date:	1917/12

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

891867

This page can be completed online.

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/4). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI communics a Class 4 feloxy. Any second or subsequent offence after conviction hereunder is a Class 3 felony (415 ILCS 5/57.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

A. Site Identification

	IEN	A Incident #:	892744, 90319	9 IEPA LPC# (10-digi	i): <u>0971855024</u>	
	C1:4-	Nome Form	ner Clark Retail S	Station #646		
	Site	e Address (NotaP	.о. вох): <u>399 West L</u>	iberty Street		
	City	y: Wauconda		County: Lake	ZIP Code:	60084
B.	Sar	mple Collector	•			
	I ce	ertify that:				
			mpling equipment/m sentative samples.	ethods were utilized		(initial)
	2.	Chain-of-custo	dy procedures were	followed in the field.		MIC (initial)
	3.	Sample integrit	y was maintained by	proper preservation.		(initial)
	4.	All samples we	ere properly labeled.			M <u>H</u> (initial)
C,	Lal	ooratory Repr	esentative			
	I ce	rtify that:				
	1.	Proper chain-or documented on	f-custody procedure the chain-of-custody	s were followed as y forms		(initial)
	2.	Sample integrit	y was maintained by	proper preservation.		(initial)
	3.	All samples we	re properly labeled.			(initial)

Laboratory Certification for Chemical Analysis 1 of 2

591867

This page can be completed online.

	4. Quality assurance/quality control procedures were established and carried out.	(initial)
	5. Sample holding times were not exceeded.	(initial)
	6. SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.	(juu) (initial)
	 An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003). 	(initial)
D.	Signatures I hereby affirm that all information contained in this form is true and accurate to the best of m knowledge and belief. I am aware that there are significant penalties for submitting false info including the possibility of fine and imprisonment for knowing violations. Sample Collector Name: <u>Marcos I. Czako</u>	y rmation,
	Name:	
	Title:	
	Company:TriCore Environmental, LLC	
	Address:1800 West Hawthorne Lane, Suite P	
	City, State, ZIP: West Chicago, Illinois 60185	
	Phone: 630-520-9973	
	Signature: 200 F. Gale	
	Date: 12/11/07	
	Laboratory Representative	
	Name: / //////////////////////////////////	
	Title: Provert Manuen	
	Company: <u>Pace Analytical</u> Address: <u>1241 Bellevve It</u>	
	Phone: $970, 469, 2436$	
	Signature:	
	Date: 12/19/14	

Pace Analytical®

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 891867

Client: TRICORE ENVIRONMENTAL, LLC.

Project Name: FORMER CLARK #646

Project Number: 100018

Lab Sample Number	Field ID	Matrix	Collection Date
891867-001	SB-38 @ 2-3	SOIL	12/11/07 15:00
891867-002	SB-38 @ 3-4	SOIL	12/11/07 15:10

Lab Contact: Laurie Woelfel Collected By: MARCOS CZAKO Report Serial No: 891867121920071319

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ruie Way Approval Signature

Date

2/19/m

Page 1 of L

Analytical Report Number: 891867 Pace Analytical Services, Inc.

Field ID: SB-38 @ 2-3

Client: TRICORE ENVIRONMENTAL, LLC. Project Name: FORMER CLARK #646 Project Number: 100018

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type : SOIL Collection Date : 12/11/07 Report Date : 12/19/07 Lab Sample Number: 891867-001

INORGANICS						And DetaTime	Pren Method	Anl Method
Test	Result	EQL	Dilution	Units	Code	,	-	
		0.000	0.58	%		12/14/07	ASTM D2974	ASTM D2974
Fraction Organic Carbon	3.27	0.580	0.56	70		ate/Time: 12/14	/07 A	nt By: DEY
					Ргер D	ate/ lime: 12/14	/01 //	

Pace Analytical Services, Inc.	An	alytical	Repor	t Numb	er: 8918	367		levue Street ay, WI 54302 2436
Client : TRICORE EN Project Name : FORMER CLA Project Number : 100018 Field ID : SB-38 @ 3-4		, LLC.				Collectio Repo	ix Type : SOIL on Date : 12/11/ ort Date : 12/19/ Number : 89186	/07
INORGANICS Test	Result	EQL	Dilution	Units	Code	Anl Date/Time	Prep Method	
Fraction Organic Carbon	0.777	0.580	0.58	%		12/14/07 ate/Time: 12/14/	ASTM D2974 07 A	ASTM D2974 nl By: DEY

All soil results are reported on a dry weight basis unless otherwise noted.

Qualifier Codes

		Explanation
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
B	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Е	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
4	All	Preservation, extraction or analysis performed past holding time.
٦ŀ	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
<	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
-	All	Elevated detection limit due to low sample volume.
vî.	Organic	Sample pH was greater than 2
1	All	Spiked sample recovery not within control limits.
2	Organic	Sample received overweight.
2	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
2	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
5	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
J	All	The analyte was not detected at or above the reporting limit.
<i>,</i>	All	Sample received with headspace.
V	All	A second aliquot of sample was analyzed from a container with headspace.
	All	See Sample Narrative.
	Organics	This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.
	All	Laboratory Control Spike recovery not within control limits.
	All	Precision not within control limits.
	-	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
	All	The analyte was not detected at or above the reporting limit.
	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
		Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and
		try to correct the deficiency.
		BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
	-	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
ļ	-	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
. 1	norganic	Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation. Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample

Pace Analytical Services, Inc. Analysis Summary by Laboratory Test Group Name 9 9 9 7 7 7 9 8 FRACTION ORGANIC CARBON B Code IL Certification B 200050 B

,

1241 Bellevue Street

Green Bay, WI 54302

Pace Analytic Services, Inc.						QC Sumr	nary				Gr 92	41 Bellevue Stre een Bay, WI 543 0-469-2436 ix: 920-469-8827
SDG:	8918				****	·····				• • • • • • • • • • • • • • • • • • • •		
Lab Section:		CHEM					QC Typ	be Client S	ample ID	Lab Sam	ple ID	
QC Batch Numb	oer: 2747	'2					MB	, WCG237	78-001MB	WCG237	<u> </u>	
Prep Method:	AST	M D2974					LCS		78-001MBLCS	WCG237	8-001MBLC	S
Applytical Mathe					•		DUP	891742-0	002DUP	891742-0	02DUP	
Analytical Metho	Ju. AST	IVI D2974					1			-		
Client Sample ID		Lab Sample	ID			Client Sample ID	Lab	Sample ID				
SB-38 @ 2-3	8	91867-001	МВ			SB-38 @ 3-4	89186		МВ			
		· · · · · · · · · · · · · · · · · · ·					•		· · · ·			
Test Name	Method Blank Result Conc	LCS Spiked Conc	LCS Rec. Conc	overy % (LCSD Spiked Conc	LCSD Recovery Conc % C	C LCS/LCS LCS/ Control Lir LCSD LCL UCL % C % %	mits Parent RPD. Sample	Result	Lab Dup	Dup RPD	Lab Dup RPD Limit
Fraction Organic Carbon	44	58.00	55.3	95.3			- 80 120	% Number 10 891742-00		Conc 0.1263	% C	%

 Conc = %
 unless otherwise noted

 C = QC Code, see Qualifer Sheet
 Q

 Parent Result is reported down to MDL in order to allow Validation of this worksheet
 Q

 The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Report Date: 12/19/2007

QC Batch Number: 27472

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require		ent Ir	forma	tion:								tion uired		ect in	form	ation				Sectio																								Pa	ae:	1 0	of	-1
Compa	ny: T	riCor	e Env	ironn	nental	LLC			*****	_		ort To:								Invoice Attentic		mation: Shawr								·····						1.5.5		مىنانلار										
Addres	s: 1	800	N. Ha	wtho	me La	ne, S	uite P	,			Сору	y To:								Compa				······································							-											36			ENC			
	٧	Nest	Chica	go, Ili	inois 6	30185		••••••				-								Addres	s:			riCore Env															F	GRO	UND I	WATE				KING	WATE	R
Email											Purc	hase	Orde	r No.	.:	100	018			Pace 0	luote	1800 V Refere	<u>N, H</u> nce:	lawthorne L	<u>ane, S</u>	uite	P									Ritan	บรา		F آر						отн			
Phone:	630-	520-9	973 -	Fax	630-5	20-99	76				Proje	ect Na	ime:	Fo	mer	Clar	k #64	16		Pace P	rojeci	t Manao	ger:				····· -····										SIT									Г мі		
Reques	ted I	Due [Date/T	AT:	S	landa	rd				Proji	ect Nu	umbe	r:	100	018				Pace P	rofile	#:															DCA		N	· /····	7 7	· · ·	'sc	<u> </u>	WI		THER_	L
ITEM #	Sec		S Or	186 19 01 (A	equire MPI heracta -Z, 0-3 MUS	LE er per 9 / ,-)	ID box.				MATE	NG WATER WATER CT DUD		COU DW WT P SL CLW AR OT TS				MATRIX CODE	SAMPLE TYPE	COMPOS					TE END/G		SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Inpreserved	so.	Pre. CONH	serva	HOP			Filter Requ Anı	ieste		Ca Mois	1		¥ 		tues C	inonia Crist		/ 154	0
1	s	в	- 3	9		@	1	4	z	5	-	1	5	7 2	511	す	1	SL	G				<u>-</u> +							-	토	오	N N		ð	{	<u>[]</u>	<u>87</u> 8	14	14	4		4	٤/	<u></u>		race Pro	Lab I.D.
2	s	в	- 4	0		@		6		1					h	\overline{h}	5			1			+	8/7/08		58		3	3	+							×	<u> x x</u>	<u>:</u>	ļ			N	4	3-	40	zc	ig A
3				Ť		-		-	-	ŀ	•			┿	41	μ	×	SL	G			+	\rightarrow	8/7/08	123	x		3	3								x	x x	<u>_</u>	<u>l</u> .			N		Ì	V		
4			+	+	$\left - \right $			┢	┼──				+	-			-						\rightarrow															_										
5					┼─┼			+						+		+	-		-				\rightarrow		_			ļ		<u> </u>				_														
•				+	┝─┼		+			$\left - \right $		$ \vdash $												····																				Τ				
6					$\left - \right $									_	_			<u> </u>		_																							1		·····			
7					\square			ļ	1					_																			-				-		+	+		+	+	-				
8				ļ			_																		1			1												+	$\left - \right $						······	
9		_															<u> </u> .						-		1						+		+				-+						+-					
10															+-	1	1	1					-+			*****	<u> </u>														-							
11								1	1.	1	1		-+-			+	+-	1	+				-+	· · · · · · · · · · · · · · · · · · ·																	<u> </u>							
12				1	\uparrow			+-	+	-				+-	+-	┿		1-					-+											_					_									
Additio	onal (Com	nenfe		1	ł				1	I																																					
															R			_		BY / AF				DATE		TIN	ME	ACC	EPT	ED	BY /	AF	FILIA	ATIC	N		DA	ΓE		TI	ME		SAM	PL	E CO	NDIT	IONS	 S
																-	2	2	\mathcal{D}	10/0	-	ster	ľ	8/2	16	∞	>			N	X	1				$\langle \prime $	5/	-	2	17	son			Т	N.Y.	N		N/X
																		Ę	Y	har	1/	7	T	-hlo	X		00	17	Po	1	苁	1.	>			1	44	20	+1	6		<u> </u>			<u>×</u> N			******
																U	\mathcal{O}	5	KA	700	χT	$\left(\right)$	3	8/18		1	0.	5					5	1		h/	2		1	70	σ	_	·*					NIX N
																			<u>F</u>	Ţ	5	/_{	4	OIUC	40		<u> </u>				O	<u> </u>		2er	277	₽Ц	81	C	<u>3</u> č	37								N/X
															-					L		SA№	PLF	ER NAME	AND :	SIGN	VATURE					183								10.0				_	N.			t Y/N
																						PRINT	Nam	E of SAMPLER	" N	an	103	C.z.	5				2.5	k aj									Temp in °C		Received on Ice	Custody	d Cools	Samples Intact
																									e e	<u>~</u>	Ģm	ko					DATE :	Signed	(MM /	08	Ŷ						Ten		Rec	<u>ਰ</u>	Seálc	Samp

	Sample Conditi	on Upon Receip		
Pace Analytical Client Nar	me: Tri Co	ore	Project #	407540
Courier:		,	Lalto	<u>el</u> De Dates an esta
Custody Seal on Cooler/Box Present:	/es 🗋 no Se	als intact: Hyes	no	
Packing Material: Dubble Wrap	oble Bags 📋 None	e 🗌 Other		
• Thermometer Used/4	Type of Ice:	et Blue None		oling process has begun
Cooler Temperature	Biological Tiss	ue is Frozen: Yes No Comments:	contents:	als of person examining
Chain of Custody Present:		/A 1.		
Chain of Custody Filled Out:		/A 2.	-	
Chain of Custody Relinquished:		IA 3.		
Sampler Name & Signature on COC:		/A 4.		
Samples Arrived within Hold Time:		A 5.		
Short Hold Time Analysis (<72hr):		A 6.		
Rush Turn Around Time Requested:		A 7.		
Sufficient Volume:	Kres DNO DNA	A 8.		
Correct Containers Used:		A 9.		
-Pace Containers Used:		A		
Containers Intact:		10.	·	
Filtered volume received for Dissolved tests		11.		
Sample Labels match COC:		12.		
-Includes date/time/ID/Analysis Matrix:	2			
All containers needing preservation have been checked.	UYes DNo DN/A	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	Dyes DNo EINA			
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:				
Headspace in VOA Vials (>6mm):				
Trip Blank Present:				
Trip Blank Custody Seals Present		10.		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:			Field Data Required?	Y / N
Person Contacted:	Date/T	īme:		
Comments/ Resolution:				
	•			
······································	······································			<u> </u>
		<u></u> ********************************		
Project Manager Review:	Lus		Date: the	B

.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

.

This page can be completed online.

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or literes, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/37.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

A. Site Identification

	lE	EMA Incident #:892744, 903	199 _{IEP}	A LPC# (10-digit):	0971855024	
	S	ta Name. Former Clark Retai	I Station #6	646		
	Si	te Address (Not a P.O. Box):399 Wes	t Liberty St	reet		
	C	ty: <u>Wauconda</u>	County:	Lake	ZIP Code:	60084
B	. Sa	mple Collector				
	Ic	certify that:				
	1.	Appropriate sampling equipment, to obtain representative samples.	methods were	e utilized		(initial)
	2.	Chain-of-custody procedures wer	e followed in	the field.		(initial)
	3.	Sample integrity was maintained	by proper pre	servation.		<u>MIC</u> (initial)
	4.	All samples were properly labeled	1.			(initial)
C.	La	boratory Representative				
	Ιœ	ertify that:				
	1.	Proper chain-of-custody procedur documented on the chain-of-custo		wed as		(initial)
	2.	Sample integrity was maintained b	y proper pres	ervation.		(initial)
	3.	All samples were properly labeled				<u>(initial)</u>
			a	- for Chaminal Ana	lucio	

IL 532 2283 LPC 509 Rev. June 2002 Laboratory Certification for Chemical Analysis 1 of 2

407540

This page can be completed online.

- 4. Quality assurance/quality control procedures were established and carried out.
- 5. Sample holding times were not exceeded.
- 6. SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.
- An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003).

D. Signatures

I hereby affirm that all information contained in this form is true and accurate to the best of my knowledge and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Sample Collector

Sample Conector

Marcos I. Czako Name: Project Manager Title: Company: _TriCore Environmental, LLC 1800 West Hawthome Lane, Suite P Address: City, State, ZIP: West Chicago, Illinois 60185 Phone: 630-520-9973 Signature: Date: Laboratory Representative Name: Title: Company: 124 Address: 54302 City, State, ZIP: Q_{2} 26 Phone: Signature: Date:

> Laboratory Certification for Chemical Analysis 2 of 2

IJ (initial)

(initial)

(initial)

(initial)

107540

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

August 15, 2008

Marcos Czako TriCore Environmental, LLC. 1800 West Hawthorne Lane Suite P West Chicago, IL 60185

RE: Project: 100018 FORMER CLARK #646 Pace Project No.: 407540

Dear Marcos Czako:

Enclosed are the analytical results for sample(s) received by the laboratory on August 08, 2008. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Laurie Woelfel

Laurie Woelfel

laurie.woelfel@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 11

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 100018 FORMER CLARK #646 Pace Project No.: 407540

Green Bay Certification IDs

Louisiana Certification #: 04168 Kentucky Certification #: 82 Wisconsin DATCP Certification #: 105-444 Wisconsin Certification #: 405132750 South Carolina Certification #: 83006001 Minnesota Certification #: 055-999-334

Green Bay Volatiles Certification IDs

Louisiana Certification #: 04169 Kentucky Certification #: 83 Wisconsin DATCP Certification #: 105-444 Wisconsin Certification #: 405132750 South Carolina Certification #: 83006001 Minnesota Certification #: 055-999-334 North Carolina Certification #: 503 North Dakota Certification #: R-150 New York Certification #: 11888 Illinois Certification #: 200050 Florida (NELAP) Certification #: E87948

North Carolina Certification #: 503 North Dakota Certification #: R-200 New York Certification #: 11887 Illinois Certification #: 200051 Florida (NELAP) Certification #: E87951

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

ace Analytical * www.pacelabs.com

407540001

407540002

SAMPLE SUMMARY

Solid

Solid

08/07/08 13:58

08/07/08 12:38

Date Received 08/08/08 08:50

08/08/08 08:50

Project: Pace Project No.:	100018 FORMER CLARK #646 407540		
Lab ID	Sample ID	Matrix	Date Collected

SB-39 @ 14.25-15.25

SB-40 @ 16-17

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

(920)469-2436

Pace Analytical "

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

SAMPLE ANALYTE COUNT

Project:	100018 FORMER CLARK #646
Pace Project No.:	407540

Lab ID	Sample ID	Method		Analytes Reported	Laboratory
407540001	SB-39 @ 14.25-15.25	ASTM D2974-87	AG	1	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	LMS	1	PASI-G
		EPA 8015B Modified	PMS	1	PASI-G
407540002	SB-40 @ 16-17	ASTM D2974-87	AG	1	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7471	LMS	1	PASI-G
		EPA 8015B Modified	PMS	1	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Pace Analytical® www.pacelabs.com

ANALYTICAL RESULTS

ć

Project: Pace Project No.:	100018 FORME 407540	R CLARK #646					<u>. </u>		
Sample: SB-39 @	14.25-15.25	Lab ID: 4075	40001	Collected: 08/07/0	8 13:5	8 Received: 08	3/08/08 08:50 N	Matrix: Solid	
Results reported o	n a "dry-weight'	' basis							
Param	eters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Gasoline Range Or	ganics	Analytical Metho	od: EPA 801	5B Modified Prepa	ration N	Method: EPA 5035	5A/5030B		
TPH (C06-C10)		<11.8 mg/	'kg	11.8	1	08/12/08 10:29	08/12/08 19:03		
6010 MET ICP		Analytical Metho	od: EPA 601	0 Preparation Meth	nod: EP	PA 3050			
Arsenic		2.3 mg/	ka	1.2	1	08/12/08 16:07	08/13/08 20:52	7440-38-2	
Barium		41.9 mg/	-	0.29	1	08/12/08 16:07	08/13/08 20:52	7440-39-3	
Cadmium		<0.29 mg/	-	0.29	1	08/12/08 16:07	08/13/08 20:52	7440-43-9	
Chromium		14.4 mg/		0.29	1	08/12/08 16:07	08/13/08 20:52	7440-47-3	
Lead		5.9 mg/	-	0.59	1	08/12/08 16:07	08/13/08 20:52	7439-92-1	
Selenium		<1.2 mg/	-	1.2	1	08/12/08 16:07	08/13/08 20:52	7782-49-2	
Silver		<0.59 mg/		0.59	1	08/12/08 16:07	08/13/08 20:52	7440-22-4	
7471 Mercury		Analytical Metho	d: EPA 747	1 Preparation Meth	od: EP	A 7471			
Mercury		<0.012 mg/	kg	0.012	1	08/12/08 15:48	08/13/08 13:37	7439-97-6	
Percent Moisture		Analytical Metho	d: ASTM D	2974-87					
Percent Moisture		15.5 %		0.10	1		08/09/08 08:38		

Date: 08/15/2008 05:05 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: Pace Project No.:	100018 FORM 407540	IER CLARK #646							
Sample: SB-40 @	16-17	Lab ID: 40754	40002	Collected: 08/07/0	8 12:3	B Received: 08	B/08/08 08:50	Matrix: Solid	
Results reported of	n a "dry-weigh	t" basis							
Param	neters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Gasoline Range O	rganics	Analytical Metho	d: EPA 801	5B Modified Prepa	ration N	/lethod: EPA 5038	5A/5030B		
TPH (C06-C10)		<11.8 mg/ł	kg	11.8	1	08/12/08 10:29	08/12/08 19:29		
6010 MET ICP		Analytical Metho	d: EPA 601) Preparation Meth	nod: EP	A 3050			
Arsenic		3.8 mg/k	a	1.2	1	08/12/08 16:07	08/13/08 21:03	7440-38-2	
Barium		40.7 mg/k	-	0.30	1	08/12/08 16:07	08/13/08 21:03	7440-39-3	
Cadmium		<0.30 mg/k	-	0.30	1	08/12/08 16:07	08/13/08 21:03	7440-43-9	
Chromium		12.3 mg/k	g	0.30	1	08/12/08 16:07	08/13/08 21:03	7440-47-3	
Lead		6.5 mg/k	g	0.59	1	08/12/08 16:07	08/13/08 21:03	7439-92-1	
Selenium		<1.2 mg/k		1.2	1	08/12/08 16:07	08/13/08 21:03		
Silver		<0.59 mg/k	g	0.59	1	08/12/08 16:07	08/13/08 21:03	7440-22-4	
7471 Mercury		Analytical Method	d: EPA 7471	Preparation Meth	od: EP/	A 7471			
Mercury		0.012 mg/k	g	0.012	1	08/12/08 15:48	08/13/08 13:38	7439-97-6	
Percent Moisture		Analytical Method	: ASTM D2	974-87					
Percent Moisture		15.6 %		0.10	1		08/09/08 08:38		

Date: 08/15/2008 05:05 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

QUALITY CONTROL DATA

Project:	100018 FORMER CLARK #646						
Pace Project No.:	407540						
QC Batch:	PMST/1699	Analysis Meth	nod:	ASTM D2974-87			
QC Batch Method:	ASTM D2974-87	Analysis Desc	cription:	Dry Weight/Perce	ent Moisture		
Associated Lab Sam	oles: 407540001, 407540002						
SAMPLE DUPLICAT	E: 62504	<u> </u>					
		407540001	Dup		Max		
Parame	eter Units	Result	Result	RPD	RPD		Qualifiers
Percent Moisture	%	15.5	15	.8 2		10	

Date: 08/15/2008 05:05 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Page 7 of 11

Pace Analytical »

QUALITY CONTROL DATA

	407540												
QC Batch:	GCV/2099			Analys	sis Method:	E	EPA 8015B Modified						
QC Batch Method:	EPA 50354	A/5030B		Analys	sis Descript	tion: G	iasoline f	Range Or	ganics				
Associated Lab San	nples: 407	540001, 407	7540002										
METHOD BLANK:	63301							., ,					
Associated Lab Sam	nples: 407	540001, 407	540002										
				Blank	c Re	eporting							
Param	neter		Units	Resul	t	Limit	Quali	fiers					
TPH (C06-C10)		mg/kg	3	4	<10.0	10.0							
LABORATORY CON Param		PLE & LCSD	: 63302 Units	Spike Conc.	6 LCS Result	3303 LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qu	alifie
		PLE & LCSD	Units		LCS	LCSD				RPD .02			alifier
Param TPH (C06-C10)	neter	mg/kg	Units	<u>Conc.</u> 50	LCS Result 56.1	LCSD Result 56.1	% Rec	% Rec	Limits		RPD		alifier
Param	neter	mg/kg	Units	<u>Conc.</u> 50	LCS Result 56.1	LCSD Result	% Rec	% Rec	Limits		RPD		alifier
Param TPH (C06-C10)	neter	mg/kg	Units E: 63304	Conc. 50 MS	LCS Result 56.1 MSD	LCSD Result 56.1 63305	% Rec 112	% Rec 112	Limits 80-120	.02	RPD 20	 	alifier
Param TPH (C06-C10)	atrix SPIKE	mg/kg	Units	<u>Conc.</u> 50	LCS Result 56.1	LCSD Result 56.1	% Rec	% Rec	Limits 80-120 MSD	.02 % Rec	RPD 20		alifier

Date: 08/15/2008 05:05 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Pace Analytical "

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: 100018	FORMER CLA	RK #646										
Pace Project No.: 407540	1											
QC Batch: MERF	P/1210		Analy	sis Methoc	1:	EPA 7471						
QC Batch Method: EPA 7	471		Analy	sis Descrip	tion:	7471 Mercur	У					
Associated Lab Samples:	407540001, 407	7540002										
METHOD BLANK: 63395												
Associated Lab Samples:	407540001, 407	7540002										
			Blan	k F	Reporting							
Parameter		Units	Resu	lt	Limit	Qualifie	rs					
Mercury	mg/k	g	<	0.010	0.01	D						
LABORATORY CONTROL S	AMPLE: 6339	96										
			Spike	LCS	6	LCS	% Red					
Parameter		Units	Conc.	Resu	t	% Rec	Limits	. Qi	ualifiers	-		
Mercury	mg/kg	9	.25		0.26	106	85	5-115				
MATRIX SPIKE & MATRIX S		TE: 63397			63398							
			MS	MSD								
		407289009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD I	RPD .	Qual
Mercury	mg/kg	0.0054J	.29	.29	0.34	0.33	113	113	85-115	.6	20	

Date: 08/15/2008 05:05 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: Pace Project No.:	100018 FORMER CLARK #646 407540			
QC Batch: QC Batch Method: Associated Lab Sa		Analysis Method: Analysis Description:	EPA 6010 6010 MET	
METHOD BLANK: Associated Lab Sar		Plank Reportir		

Parameter	Units	Blank Result	Reporting Limit	Qualifiers
Arsenic	mg/kg	<1.0	1.0	
Barium	mg/kg	<0.25	0.25	
Cadmium	mg/kg	<0.25	0.25	
Chromium	mg/kg	<0.25	0.25	
Lead	mg/kg	<0.50	0.50	
Selenium	mg/kg	<1.0	1.0	
Silver	mg/kg	<0.50	0.50	

LABORATORY CONTROL	. SAMPLE:	63850	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	25	24.5	98	80-120	
Barium	mg/kg	25	24.8	99	80-120	
Cadmium	mg/kg	25	24.3	97	80-120	
Chromium	mg/kg	25	25.3	101	80-120	
_ead	mg/kg	25	24.8	99	80-120	
Selenium	mg/kg	25	24.1	96	80-120	
Silver	mg/kg	12.5	12.0	96	80-120	

MATRIX SPIKE & MATRI	K SPIKE DUPLICA	TE: 63851			63852							
Parameter	Units	407566002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/kg	2.9	28.4	28.4	28.1	27.7	89	87	75-125	2	20	
Barium	mg/kg	62.5	28.4	28.4	90.7	84.3	99	77	75-125	7	20	
	mg/kg	0.45	28.4	28.4	26.5	26.0	92	90	75-125	2	20	
Cadmium	mg/kg	18.9	28.4	28.4	45.1	43.1	92	85	75-125	5	20	
Chromium	00	48.3	28.4	28.4	78.2	67.4	105	67	75-125	15	20	M0
Lead	mg/kg mg/kg	46.3 0.33J	28.4	28.4	24.9	24.4	86	85	75-125	2	20	
Selenium Silver	mg/kg	0.081J	14.2	14.2	13.2	13.0	92	91	75-125	2	20	

REPORT OF LABORATORY ANALYSIS

Page 10 of 11

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project:	100018 FORMER CLARK #646
Pace Project No.:	407540

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

M0 Matrix spike recovery was outside laboratory control limits.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

[Result	Initial weigh	t Final Vol.	1	1	Final Calc.	7
	Sample	Analyte	(ug/L)	(g)	(L)	DF	%moisture	(mg/Kg)	1,
SB 39 [407540001	COD	269770	0.05	0.002	1	15.498	12769.8753	12
5340	407540002	COD	323370	0.05	0.002	1	15.57	15320.1469	
								#DIV/0!]
Ĺ								#DIV/0!]
L								#DIV/0!]
	407540001							#DIV/0!	
L	MDL	COD	11820	0.05	0.002	1	15.498	559.5134	
L	EQL	COD	50000	0.05	0.002	1	15.498	2366.8079	
L								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
L								#DIV/0!	
								#DIV/0!	
	407540002							#DIV/0!	
<u> </u>	MDL	COD	11820	0.05	0.002	1	15.57	559.9905	
	EQL	COD	50000	0.05	0.002	1	15.57	2368.8262	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
			· · · · · · · · · · · · · · · · · · ·					#DIV/0!	
								#DIV/0!	
								#DIV/0!	
								#DIV/01	
								#DIV/0!	
								#DIV/0!	
.								#DIV/0!	
-								#DIV/0!	
								#DIV/0!	
								#DIV/0!	
L		L						#DIV/0!	

mg/Kg = (Result (ug/L)*DF*FV(L))/(W(g)*((100-%Moisture)/100))

• •

APPENDIX B

SOIL BORING LOGS

						SB-33		
TriC	Core Environ	mental, LLC	Drill Metho	od: Dire	ct-push	Date Drilled:	01-18-07	Logged By:
	·		Boring Dia	ı: 2.125	Inches	DTW While Drilling:	10 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Litholc	ъду	Description		
	0.2	XXXXXXXX		777777	PT	Grass and topsoil Brown silty CLAY, no odor,	dry	
	1.4			<i>\////</i>	CL	Brown silty CLAY, trace or		, dry
	0.9		<u> </u>		PT	Black topsoil, trace organic	s, no odor, moi	st
	2.2				CL	Dark brown and black silty organics, no odor, moist	CLAY, trace sa	nd, gravel, and
	0.4				CL	Brown and tan silty CLAY, t	race sand and	gravel, no odor,
\bigotimes	-		- 5 -			dry Brown and tan silty CLAY, r	no odor, moist	
	2.4							
	1.5				CL			
						Tanish-gray silty CLAY, trac	o gravel and or	appice clight
	9.7					odor, very moist	e graver and or	games, sign
\bigotimes	017		- 10					
			- 10		.	Gray fine grained SAND, we 10'	ll sorted, odor,	saturated at
	31 (lab)			S	w			
\bigotimes						Gray fine grained SAND, we	ll sorted, satura	ited
\mathbf{X}	2.0							
X				SI	N			
\bigotimes	2.2		15 —					
		_	_					
			_					
			_					
-		ated bentonite t	from 15.5' tc	0.25' bls.	Capped	Site: Former Clark Reta 399 West Liberty S Wauconda, Illinois IEMA No.: 892744 LPC No.: 0971855	Street 60084 and 903199	46
						Project No.: 1	00018 F	Page 1

						SB-34				
Tri	Core Environ	mental, LLC	Drill Metho	od:	Direct-push	Date Drilled:	01-18-07	Logged By:		
			Boring Dia	a: 2	.125 Inches	DTW While Drilling:	8 Feet	M. Czako		
Sample	PID (ppm)	Completion	Depth (feet)	Li	thology	Description				
	1.2	XXXXXXXX			PT	Grass and topsoil Brown silty CLAY, no odor	, dry			
	0.7				CL					
	0.6									
	0.5					turning reddish-brown				
	1.6		5		CL					
	2.2					Brown fine grained SAND,	well sorted odd	nr. verv moist		
	977		-		SW					
	1,333 (lab)				SW	Gray fine grained SAND, w	vell sorted, odor,	saturated at 8'		
	80.5		- –			no odor				
	3.8				SW					
	3.3		- 15 -							
			· -							
	bletion Notes: illed with hydr rass.	rated bentonite	e from 15.5' f	to 0.25	i' bls. Cappe	Site: Former Clark Re 399 West Liberty Wauconda, Illino IEMA No.: 89274 LPC No.: 09718	/ Street is 60084 i4 and 90319			
						Project No.:	100018	Page 1		

						SB-35	- 100			
Tr	iCore Environ	mental, LLC	Drill Metho	od: [Direct-push	Date Drilled:	01-18	-07	Logged By:	
		. '	Boring Dia	a: 2.1	125 Inches	DTW While Dri	lling: 8 F	eet	M. Czako	
Sample	PID (ppm)	Completion	Depth (feet)	Litl	hology	Description				
	0.1	XXXXXXXX			PT	Grass and topsoil Brown silty CLAY, tr	ace sand, no oc	lor, dry		
	0.1				CL					
X	0.1				CL	Brown silty CLAY, s				
XX	0.1			9, 0, 0, 0, 0 6, 0, 0, 6 0, 0, 0, 6 1, 6, 0, 0, 6	SC	Brown silty CLAY in SAND, no odor, moi	st			
	0.1			0. / / 0	SW	Brown fine grained S odor, moist	SAND, well sorte	ed, trace	gravel, no	
X	3.1		- 5 -		SW	odor				
	6.1				SW	hydrocarbon staining	g at 7.75'			
	118 (lab) 103		 - 10		SW	Gray fine grained SA saturated at 8'	ND, well sorted	, trace g	ravel, odor,	
	2.4 1.9		- 15 -		SW	no odor				
			-							
omp	letion Notes:	L			I	Site:				
	lled with hydra	ated bentonite	from 16' to	0.25' bls	s. Capped v	399 West Li Wauconda,	k Retail Static berty Street Illinois 60084 92744 and 90 971855024	1	6	
						Project No.:	100018	P	age 1	

	· · · · · · · · · · · · · · · · · · ·					SB-36			
TriC	Core Environ	mental, LLC	Drill Metho	od: [Direct-push	Date Drilled:	01-18-07	Logged By:	
			Boring Dia	a: 2.	125 Inches	DTW While Drilling:	10 Feet	M. Czako	
Sample	PID (ppm)	Completion	Depth (feet)	Lit	hology	Description			
	NA 0.1 6.4 1.5 1.2 2.3 1.6 0.1 0.3 (iab) 0.5 0.2		- 5 -		Concrete CL CL CL CL CL CL CL SW	Concrete Gray and tan silty CLAY, so sand, no odor, moist Gray and tan silty CLAY, bu Gray and tan silty CLAY, tra moist Gray silty CLAY, trace sand Gray silty CLAY, no odor, m Gray sandy CLAY, no odor, m Brown fine grained SAND, w	ittle, dry, no od ace sand and gr and gravel, mo oist saturated at 10	or ravel, stiff, bist	
-	etion Notes: ed with hydra	ated bentonite	from 15' to	0.5' bls.	Capped w	Wauconda, Illinois IEMA No.: 892744 LPC No.: 0971855	Street 60084 and 903199 5024	•	

					SB-37		
Tri(Core Environ	mental, LLC	Drill Method	l: Direct-push	Date Drilled:	01-18-07	Logged By:
	•	•	Boring Dia:	2.125 Inches	DTW While Drilling:	6 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology		cription	
	0.1	XXXXXXXX		PT	Grass and topsoil, some or		
	0.1			CL	Greenish-gray silty CLAY,		
X	0.1				Gray and tan silty CLAY, tr	ace organics, n	io odor, moist
X	0.2			CL			
X	0.2						
\bigotimes	0.1		- 5	CL	turning stiff and very moist		
\sim					Tanish-gray silty CLAY, no	odor, saturated	l at 6'
	0.4 (lab)			CL			
\bigotimes					Gray silty CLAY, trace sand saturated	l and gravel, sti	iff, no odor,
\bigotimes	0.1			CL			
			- 10 -				
	0.1			SW	Brown fine grained SAND, v	well sorted, no o	odor, saturated
\propto							
		_					
		-	- 15				
		-					
-		_	· -				
	etion Notes: lled with hydr	ated bentonite	e from 12' to 0	.25' bls. Capped v	Site: With Sormer Clark Ret 399 West Liberty Wauconda, Illinois IEMA No.: 892744 LPC No.: 097185	Street s 60084 4 and 903199	
					Project No.:	100018	Page 1

							SB-38			
Tri	Core Environ	mental, LLC	Drill Metho	od:	HA	. C	Date Drilled:	12-11-0)7	Logged By:
			Boring Dia	: 2.1	25 Inches	[DTW While Drilling:	NA Fe	et l	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lith	nology		Desc	cription		
	0.1 0.1 (lab) 0.1 (lab)				PT CL		ass ck top soil, no odor, mo Idish-brown silty CLAY,		noist	
	letion Notes: lled with hydr	ated bentonite	e from 4' to 0	.25' bls.	Capped	with	Site: Former Clark Ret 399 West Liberty Wauconda, Illinoi IEMA No.: 892744 LPC No.: 097185 Project No.:	Street s 60084 4 and 903	199	ige 1

-					SB-39		
TriC	ore Environ	mental, LLC	Drill Metho	d: Direct-Push	Date Drilled:	08-07-08	Logged By:
			Boring Dia:	2.125 Inches	DTW While Drillin	g: 14.25 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	De	escription	
	NA			PT PT GP	Grass Brown silty clay topsoil, Gravel fill material Brown silty CLAY, trace no odor, dry		slightly brittle,
	NA			CL			
	NA				Black and brown silty cla odor, moist	ayey PEAT, very o	rganic, soft, no
	NA						
	NA			РТ			
	NA						
	NA						
	NA		- 15 -	CL	Black and brown silty CL very moist Gray silty CLAY, trace gr		
××××							
	etion Notes: ed with ben		to 0.167' bls	. Capped with gras	Wauconda, Illi	rty Street nois 60084 744 and 903199)
					Project No.:	100018	Page 1

					SB-40		
TriCo	ore Environ	mental, LLC	Drill Method	d: Direct-Push	Date Drilled:	08-07-08	Logged By:
			Boring Dia:	2.125 Inches	DTW While Drilling:	15.5 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	Description		
	0			₩ FF	Grass Brown silty clayey topsoil,	some organics,	trace gravel
	0			SC	and sand, no odor, dry Brown silty clayey SAND, Brown silty CLAY, trace sa	trace gravel, no and and gravel, s	odor, dry slightly brittle,
	0			CL	stiff, no odor, dry		
	0		 - 5	CL	Brown and tan silty CLAY, no odor, dry	trace organics a	and gravel, stiff,
	0			CL	Dark gray silty CLAY, trace moist	e sand, slightly b	prittle, no odor,
	0		– – – – – –		Black and brown silty claye	ey PEAT, soft, s	light odor, moist
	0		— 10 —	PT			
	0			CL	Brown silty CLAY, some or		or, moist
	0			CL	Brown silty CLAY, no odor,		
	0				Gray silty CLAY, trace grav saturated	vel, semi-stitt, no	o odor,
	0		 	CL			
	0						
-	etion Notes ed with ber		' to 0.167' bls	. Capped with gra	Site: Shivam Energy, 399 West Liberty Wauconda, Illino IEMA No.: 89274 LPC No.: 09718	y Street bis 60084 14 and 90319	9
					Project No.:	100018	Page 1

				RW-3							
TriC	Core Environ	mental, LLC	Drill Method:	HSA	Date Drilled:	05/15/09	Logged By:				
			Boring Dia:	10.25 Inches	DTW While Drilling:	NA Feet	M. Czako				
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	Desc	ription					
					No soil samples were collect installed adjacent to SB-41. lithological description.	cted since the v See soil borin	well was ng log SB-41 for				
" sch VC so ls, hyd	creen from 6' drated bentor	to 16' bls. Ba	ckfilled with sa o 0.75' bls. Ca	40, 0.010" slottec ind from 16' to 5.5 ipped with concre	te. Wauconda, Illinois IEMA No.: 892744 LPC No.: 0971855	Street 60084 and 903199 5024	Page 1				

	·				SB-41		
TriC	Core Environr	mental, LLC	Drill Metho	d: Direct-Push	Date Drilled:	02/02/09	Logged By:
			Boring Dia:	2.125 Inches	DTW While Drilling:	8 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	Desc	cription	
	0.0	××××××××		CL	Grass and topsoil Brown silty CLAY, some or soft	rganics, no odor	r, slightly moist,
	0.0			CL	Brown silty CLAY, some or slightly moist, soft	ganics, trace sa	and, no odor,
***	104 901 (lab)			CL	Brown silty CLAY, some or no odor, slightly moist, soft Brown fine grained SAND,		
	> 9,999 (lab)			SP			
	7,754			SP	Gray fine grained SAND, o Gray fine grained SAND, sl		
	81.0				Gray line grained SAND, S		
	679			SP			
	138		- 15 -				
		-					
-	iletion Notes:	tonite from 16	' to 0.25' bls.	Capped with gras	Site: Shivam Energy, 399 West Liberty Wauconda, Illino IEMA No.: 89274 LPC No.: 09718	/ Street is 60084 14 and 90319	9
					Project No.:	100018	Page 1

						RW-4				
Tri	Core Environ	mental, LLC	Drill Metho	od:	HSA	Date Drilled:	05/15/09	Logged By:		
			Boring Dia	a: 10	.25 Inches	DTW While Drilling:	7.5 Feet	M. Czako		
Sample	PID (ppm)	Completion	Depth (feet)	Lit	hology	Dese	cription			
	NA			<u>चि</u> ंच चि	Concrete	Concrete Gravel fill material		· · · · · · · · · · · · · · · · · · ·		
\bigotimes	0.7			000	GW	Brown CLAY, trace gray si	lt, slight odor, s	lightly moist		
\times	9.7				CL	Brown CLAY, trace gray si	lt, trace sand ar	nd gravel, slight		
\times	23.9				CL	odor, slightly moist				
\bigotimes	76.1				CL	Gray silty brown CLAY, slig	ght odor, siightiy	y moist		
	378				CL	no odor				
\times						Brown fine grained SAND,	odor, moist, sa	turated @ 7.5'		
	1,890 (lab)				SP					
	1,854					Gray fine grained SAND, o 9.5', saturated	ray fine grained SAND, odor, black staining from 9.25' t 5', saturated			
	1,621		— 10 — -		SP					
	72.7					Gray fine grained SAND, no	adar acturato	d		
	22.1		15		0.0	Gray line grained SAND, ho	ouor, saturate	u		
	NA		- 15 -		SP					
L						Site:				
4" sch ⊃VC s ols, hy	creen from 6 drated bento	ing from 0.5' t ' to 16' bls. Ba nite from 5.5' d flush to surf	ackfilled with to 0.75' bls.	sand fr	om 16' to 5.	d Shivam Energy, l 5' 399 West Liberty	Street is 60084 4 and 90319	9		
						Project No.:	100018	Page 1		

					RW-5			
Tri	Core Environ	mental, LLC	Drill Method:	HSA	Date Drilled:	05/15/09) Logge	d By:
			Boring Dia:	10.25 Inches	DTW While Drilling:	NA Fee	t M. Cza	ako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	Desc	cription		
<u>s</u>					No soil samples were colle installed adjacent to SB-44 lithological description.	cted since th	e well was bring log SB-4	44 for
l" sch PVC s bls, hy	creen from 6 drated bento	' to 16' bls. Ba	ockfilled with sa o 0.75' bls. Ca	40, 0.010" slotte nd from 16' to 5. pped with concre	5' 399 West Liberty	Street is 60084 4 and 903 ²	199 Page	1

					SB-44		
TriC	Core Environ	mental, LLC	Drill Metho	d: Direct-Push	Date Drilled:	02/02/09	Logged By:
			Boring Dia:	2.125 Inches	DTW While Drilling:	8 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	Desc	cription	
					Concrete Gravel fill material		
	NA			GW			ne odor olightly
$\times\!\!\times\!\!\times$	0.0			CL	Brown silty CLAY, trace sa moist		
	38.1 (lab)				Brown silty CLAY, little gra semi-stiff, slight odor, sligh	y sin, trace sand itly moist	u anu gravei,
	24.0			CL			
\times	427				Brown fine grained SAND,	odor moist	
	9,914 (lab)			SP			
	1,021		 - 10		Gray fine grained SAND, o	dor, saturated (තු 8'
	675			SP			
	161				Gray fine grained SAND, n	o odor, saturate	d
	4.7		- 15 -	SP	Gray line grained SAND, In		
Comp	letion Notes:			IIII	Site:		
	illed with ben	tonite from 16	to 0.25' bls.	Capped with	Shivam Energy, 399 West Liberty Wauconda, Illino IEMA No.: 89274 LPC No.: 09718	/ Street bis 60084 14 and 90319	9
					Project No.:	100018	Page 1

		· · ·				RW-6		
Tri	iCore Environ	mental, LLC	Drill Method:	HSA	Da	ate Drilled:	05/15/09	Logged By:
			Boring Dia:	10.25 Inches	D	TW While Drilling:	NA Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology			ription	
					insta	oil samples were colle lled adjacent to SB-45 ogical description.	cted since the . See soil bori	well was ng log SB-45 for
4" scł PVC : bls, h	screen from 6 ydrated bento	' to 16' bls. Ba	ackfilled with sa to 0.75' bls. Ca	40, 0.010'' slotte and from 16' to 5. apped with concr	.5'	Site: Shivam Energy, I 399 West Liberty Wauconda, Illinoi IEMA No.: 89274 LPC No.: 097185 Project No.:	Street s 60084 4 and 90319	9 Page 1

					SB-45		
Tri	Core Environ	mental, LLC	Drill Metho	od: Direct-Push	Date Drilled:	02/02/09	Logged By:
	r		Boring Dia	: 2.125 Inches	DTW While Drilling:	7 Feet	M. Czako
Sample	PID (ppm)	Completion	Depth (feet)	Lithology	Desc	cription	
\otimes	NA			Concrete	Concrete Gravel fill material		
\bigotimes	NA NA			Solos GW	Brown silty CLAY, trace sil	t, sand and grav	vel, stiff, no
	7.7						
	7.8 (lab)		- 5 -	CL			
	16.0 (lab)						
	> 9,999			CL SP	Grayish-brown silty CLAY, t no odor, saturated @ 7' Brown fine grained SAND, of Gray fine grained SAND, of	odor, saturated	and gravel, stiff,
	4,530				Gray line grained SAND, or	ior, saturateu	
	199			SP			
	476				Gray fine grained SAND, no	odor caturated	
	5.4		- 15	SP	Gray line grained SAND, no		
			_				
		-	-				
mple	etion Notes:		I		Site:		
ickfill ncret		onite from 16' t	o 0.25' bls.	Capped with	Shivam Energy, Ir 399 West Liberty Wauconda, Illinois IEMA No.: 892744	Street s 60084 t and 903199	
					LPC No.: 097185		
					Project No.:	100018	Page 1

APPENDIX C

ANALYTICAL LABORATORY REPORTS AND CERTIFICATIONS - GROUNDWATER

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section												•			ion									s	ection	С																									-	F					
Requi							fal (10							ired										ivoice in		nation:			•																					-	P	age:	1	of		1
									•		-				rt To:		larco)S I.	Cza	iko				A	ttention:		Shaw	n Ro	deck													٦				1. A. S.			21.01	A T (GEN	2			L. C.
Addre										þ			C	ору	To:									C	ompany	/ Na	me:							-								-		~					1000 10000		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· · · · · · · · · · · · · · · · · · ·	Sec. No. 1946	Cherry Star	an a	TIN STA	
		We	est C	hica	go,	llíno	is 60	185											*****					A	ddress:							nmenta		2								-	- L						ND V	VATE	•					ATER	
Email	To:	mi	icza	ko(@ca	mc	ast	ne					P	urch	hase	Ord	er N	o.:		1000	18			P	ace Quo	ote F	1800 YR	W. H nce:	lawth	norne l	Lane	e, Suite	e P		·····						• · · · · · ·	_	F.	7; U	ST	Γ	RC						ОТ				
Phone	630-	-52	0-99	73	Fa	x 630	0-52	0-99	76				P	rojer	ct Na	ame:	F	orm	er C	lark	#646	6		P	ace Pro	iect	Mana	der'	·								······					_		S	ITE			\Box	GA	. Г.	IL	2	IN	Γ.	мі [NC .	
Reque	sted	Du	ie Da	ate∕∏	AT:		sta	nda	d			******	_		ct Nu				000						ace Pro	-		901.						···		•		•	•					00	AŢI	ON			ЮН		' sc	; _	WI	٣	отн	ER	
1	Se	ct	ion	D	F	lequ	ired	Clie	nt In	form	natio	on		alid M ATRIX	letrix C	Codes				i an think the	Т			+			COL		0.T.F	~~~						-				Desirences			Filt	ered	(Y/N)	Ţ	v/r	\checkmark	\angle	L	\square			7		
·				S			֊լ						DRI WA	RINKING ATER ASTE WA	WATER	•	DH WT WV	2ЦЕ # Т				ЭCE	TYPE				COL		CIE	20	•		AT	z	ERS .	-		Pre	serva	ative:	5		-	ques	ted	/	' /	· /	./					[]	/		
		•		0					box.				PR	NUSOLI	т		۶	L L WP				MATRIX CODE	E J	5									TEMP /	СТЮ	CONTAINERS								Αn	ŧ	/	/ /	/ /	/ /	/ /。	./	' /	' /		Ĩ/			
** N			S	ampi	le ID	s Ml	0-9 . JST	BE	UNIC	JUE		•	WIR	PE 3			OL AR OT TS	.₩P ₹ T				ATR	SAMPLE		COMPOSITE	STAF	स			OMPOS	ITE EN	D/GRAB	WPLE	JULE	CON	pav										/ .	13			/ ,	/ /	/ /	Suoju /		60	20	
цем													on Tis	r Iher SSive			TS	•				2	S	5-	DATE		70.0						SAM	ŏ	#0E	Jupreserved	H ₂ SO.	ő		зĽ	Na ₂ S ₂ O ₃			/			÷.	/ð			/.		;/Ľ	S.S.		35	
	s	в	-	3	3	Τ	@	Τ	1	0	-	-)		,	Τ			T	Τ	. [+-	DATE	<u>`</u>	TIM	5		ATE		TIME				5	- I	[©] NH	Ŧ	NaOH	Na2	- HO	<u> </u>	/ Ř	8	2	<u>E</u> /	1.5			Ŀ	2	/			Project) Lab (
2	/S	1		3		-	1	1	8	- F		10	1	+	+	+	+	+	+	-+-	-	SL	G						1/1	8/07		320	>		.3	3							Ľ	x	x	x			Øc	21	N	N Z	3-4	100	z, Α	6	
1973 - Ka				1	1	1	@		8					+					+			SL	G						1/1	8/07	1	519			3	3			•					x	x	x		1	20		N		1				
_ 3	S	-	-	3		+	@		0		4	10							_	_	_	SL	G						1/1	8/07	11	640			3	3					Τ			x	x	Y			20	7	N		\neg				
4	s	В		3	6		0	-	1	0	-	- 0	1	4					_			SL	G						1/1	18/07	10	025	-		3	3								x			-		2 <u>0</u> 36	7		-					
5	S	в		3	7		@	-	6	-	· [8	8	1									SL	G						1/1	18/07	1	150			3	3				-								-F	<u>_</u>	4	<u> </u>	4	+	·			
6	м	P	-	1					_													wт	G			_				19 107		845				- "		$\left - \right $					╉─	X		×		-ŕ	2φ	4-	1				6.0		
7	м	W	/ -	1	1	s										T		T	T			wr	1-	-		-				107		405			5_		1		3					X	×	×	×	×	00	242	2 1	N é	2-2-	son	ιi,	3-40	n
8	м	w	/ -	2						ŀ			Τ	T				1	+		-†	WT	1							107 17	-				5	+	1	1	3					X	×	×	X	×	Â.	25	2	<u>м</u>				1	
9	м	W	/	2	6		1	1	1	1			+-	+	-		-	-	+		-		1	-						8/07		335			5		1	1	з					X	x	x	x	x	01	08	1	N					
			-		1	1		+	╈	┿	+-	+-		+			-+-	-+-	+			WT	G					_	1/1	07		320			5		1	.1	з					X	x	x	x	x /	Dr	70	} ⊾	N				/	
	ÌМ	W	<u>' -</u>	1	8		+	+	+	╋	+							_	+	_	-	WŢ	G						1/1	6 /07	13	307			5		1	1	3					x	x	x	x	x	Ø	11		N	1	¥-	١	$\overline{\nabla}$	
11		-		+			+							+		<u> </u>					_		 																					1				4		T	-	-		••••••	· · · · · ·		
12		I					<u> </u>	1						Ļ								,																								\neg		-	-			+	·				
Additi	onali	Co	mm	ents	:													F	REI	INC	וחכ	SHI	ED I	BY	/ AFFI	IL.IA	ATIO	N	DA	TE		ŤII	ME		ACCE	:PT	ED	BY /	AFE		ATIC)N		In/	TE			TIM		a c		L	E C'		ΙΤΙΟ		
																		۴		2	R	1	-	\subseteq	21	ų		7	1/10	07	1/	51	0			s de la		and the second		T		and the second	9/z	19412.06-357				80,904								- <u></u>	
																				14	12	To	C	E	land and	<u>~</u>	 -		10	11	$\overline{\mathbf{n}}^{\prime}$		200	~	~	$\frac{1}{\sqrt{2}}$	10	0ª	2	J		-11	ŢÆ	2			Ż	A	, 				XXN		, NYY	Ϋ́Ν	
					•													┢		¥	n.	Ne	6		Von	チ		4	ιų	q,	4-	- -#	<u> </u>	····	··········	P	\mathcal{P}	2	-	\rightarrow				_/_	/	·							۲N ۲		Χ'N	XIN	
,																•		-			Ľ	Þ	<u>}</u>		\square			_ <u> </u> _	112	elo ,	4	10	<u>5C</u>	2		[[14	È	Z	5	5		\perp	2	<u>0/0</u>	7	118	50	2	1	(°. Č	2	E.	<u>,</u>	(F)	E	2
																		_						<u> </u>											(×.		· .			I	•								Ϋ́N		XIN	NX	
																											100 N 10 N 10 N) sigi	NATL	JRE																	0	+					
																											PRINT	Name	of SA	MPLER	:		Мат	rcos	I. Czak	0						404,0003		nan Ald				MINGER			Temp in °C		Received on Ice	. -	stady I Caaler	Samples Intact	
																											SIGNA	TURE	of SA	MPLER	:					<u> </u>				DATE	Signed	(MM	/ DD 7	YY)						\neg	Temp		čecei Ic		Cust Sealed 1	mple	
																										1	L	·						·												····-					·		u		Š	Sa	

-

.

S	mple Conditic	n Upon Receipt	
Pace Analytical Client Name	e: TRICO	DRE	Project #880335
Courier: Fed Ex UPS USPS Cli Tracking #:	ent 🗌 Commercia	I 🗌 Pace Other 🖉	205 Martin Alexandre
Custody Seal on Cooler/Box Present:	no Sea	lls intact: ves] no
Packing Material: D Bubble Wrap Bubbl	e Bags 🔲 None	Other	
Thermometer Used JB	Type of ice: (We		Samples on Ice, cooling process has begun
Cooler Temperature	Biological Tissu	e is Frozen: Yes No	Date and Initials of person examining contents: <u>MA - 20-07</u>
Temp should be above freezing to 6°C		Comments:	,
Chain of Custody Present:			
Chain of Custody Filled Out:			
Chain of Custody Relinquished:			
Sampler Name & Signature on COC:	Yes DNO DN/		
Samples Arrived within Hold Time:		4 5.	-
Short Hold Time Analysis (<72hr):	UYes DNO, DN/		
Rush Turn Around Time Requested:		17. 5 day TA	}
Sufficient Volume:	Pres []No []N/A	8.	
Correct Containers Used:	Pres INO IN/A	9.	
-Pace Containers Used:	Pres DNO DN/A	<u> </u>	
Containers Intact:		······································	
Filtered volume received for Dissolved tests	DYes DNo TANIA	11.	
Sample Labels match COC:	ØYes/ONO ON/A	12.	
-Includes date/time/ID/Analysis Matrix:	3/41		
All containers needing preservation have been checked.	DYES DNO DN/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Dyes DNo DN/A		h an cadad
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	initial when completed	Lot # of added preservative
Samples checked for dechlorination:	OYes ONO DIN/A	14.	
Headspace in VOA Vials (>6mm):	□Yes ☑No □N/A	15.	
Trip Blank Present:	DYes DNO DNIA	16.	
Trip Blank Custody Seals Present	□Yes □No □N/A		:
Pace Trip Blank Lot # (if purchased):	·	t	
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Date/	Fime:	· · · · · · · · · · · · · · · · · · ·
Person Contacted: Comments/ Resolution:	· ·		
		-	
			· .
			·
Project Manager Review:	2		Date: 1-22-07
Note: Whenever there is a discrepancy affecting North Ca Certification Office (i.e. out of hold, incorrect preservative,	rolina compliance sam out of temp, incorrect	ples, a copy of this form will containers)	be sent to the North Carolina DEHNR

٠

ч.

F-ALLC003rev.3, 11September2006

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 LLCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$10,000.00 for the violation continues (415 LLCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 LLCS 5/4). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent differese after conviction hereunder is a Class 3 felony (415 LLCS 5/57.17). This form has been approved by the Forms Management Center.

> Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

880335

(initial)

(initial)

(initial)

A. Site Identification

					1			
					IEPA LPC# (10-digit):	0971855024		ۍ ۱
	Sit	te Name: Forr	mer Clark Retail S	Static	on #646			
	Sit	te Address (Not a I	399 West L P.O. Box):	ibert	y Street			
		_{ty:} Wauconda		Cou	inty: Lake	ZIP Code:	6008	34
B.		mple Collector				* .		
	Ιc	ertify that:						
	1.	** *	mpling equipment/me sentative samples.	ethods	s were utilized			(initial)
	2.	Chain-of-custo	ody procedures were f	follow	ved in the field.			Marchanica (initial)
	3.	Sample integrit	ty was maintained by	prope	er preservation.		٤	(initial)
	4.	All samples we	ere properly labeled.					(ińitial)
C.	La	boratory Repr	resentative					

I certify that:

C.

1. Proper chain-of-custody procedures were followed as documented on the chain-of-custody forms

- 2. Sample integrity was maintained by proper preservation.
- 3. All samples were properly labeled.

680335

	4.	Quality assurance/quality control procedures were established and carried out.	َرْنَ) (initial)
	5.	Sample holding times were not exceeded.	(initial)
	6.	SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.	(initial)
	7.	An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003).	(initial)
D.	I he knc	patures ereby affirm that all information contained in this form is true and accurate to the best of m owledge and belief. I am aware that there are significant penalties for submitting false info uding the possibility of fine and imprisonment for knowing violations.	ıy
	Sar	nple Collector	

Marcos I. Czako Name: Project Manager Title: TriCore Environmental, LLC Company: 1800 West Hawthorne Lane, Suite P Address: City, State, ZIP: West Chicago, Illinois 60185 Phone: _____630-520-9973 Signature: Date: Laboratory Representative Name: Title: 魞 Company: ΜØ. Address: : City, State, ZIP: $\langle U \rangle$ 02 Phone: Ĺ, pell Signature:

[1210/0

Date:

Laboratory Certification for Chemical Analysis 2 of 2

ace Analytical®

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 880335

Client: TRICORE ENVIRONMENTAL, LLC.

Project Name: FORMER CLARK #646

Project Number: 100018

Lab Contact: Laurie Woelfel Collected By: MARCOS CZAKO Report Serial No: 880335012920070833

Lab Sample Number	Field ID	Matrix	Collection Date
880335-001	SB-33 @ 10-11	SOIL	01/18/07 13:20
880335-002	SB-34 @ 8-10	SOIL	01/18/07 18:19
880335-003	SB-35 @ 8-10	SOIL	01/18/07 16:40
880335-004	SB-36 @ 10-11	SOIL	01/18/07 10:25
880335-005	SB-37 @ 6-8	SOIL	01/18/07 11:50
880335-006	MP-1	WATER	01/19/07 13:45
880335-007	MW-11S	WATER	01/19/07 14:05
880335-008	MW-2	WATER	01/19/07 13:35
880335-009	MW-26	WATER	01/19/07 13:20
880335-010	MVV-18	WATER	01/19/07 13:07

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

nello.

Approval Signature

Date

Analytical Report Number: 880335

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type : WATER

Report Date: 01/29/07

Collection Date: 01/19/07

Lab Sample Number: 880335-006

Client: TRICORE ENVIRONMENTAL, LLC. Project Name: FORMER CLARK #646 Project Number: 100018 Field ID: MP-1

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	20	20	1	ug/L	, , , , , , , , , , , , , , , , ,	01/24/07	SW846 3010A	SW846 6010B
Barium		190	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Cadmium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Chromium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Lead	<	7.5	7.5	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Mercury	<	0.20	0.20	1	ug/L		01/23/07	SW846 7470A	SW846 7470A
Selenium	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Silver	<	10	10	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
COD		34	20	1	mg/L		01/22/07	EPA 410.4	EPA 410.4
Nitrogen, Total Kjeldahl	<	1.0	1.0	1	mg/L		01/24/07	EPA 351.2	EPA 351.2
Phosphorus	<	0.50	0.50	1	mg/L		01/23/07	EPA 365.4	EPA 365.4
TPH - GASOLINE				Prep Date:	01/23/07				
Analyte	F	Result	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
TPH - Gasoline	3	100	100	1	ug/L		01/23/07	SW846 5030B	SW846 M8015

Analytical Report Number: 880335

(_

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type: WATER

Report Date: 01/26/07

Collection Date: 01/19/07

Lab Sample Number: 880335-007

Client : TRICORE ENVIRONMENTAL, LLC. Project Name : FORMER CLARK #646 Project Number : 100018 Field ID : MW-11S

(

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	20	20		ug/L		01/24/07	SW846 3010A	SW846 6010B
Barium		58	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Cadmium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Chromium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Lead	<	7.5	7.5	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Mercury	<	0.20	0.20	1	ug/L	,	01/23/07	SW846 7470A	SW846 7470A
Selenium	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Silver	<	10	10	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
COD		28	20	1	mg/L		01/22/07	EPA 410.4	EPA 410.4
Nitrogen, Total Kjeldahl	<	1.0	1.0	1	mg/L		01/24/07	EPA 351.2	EPA 351.2
Phosphorus	<	0.50	0.50	1	mg/L		01/23/07	EPA 365.4	EPA 365.4
TPH - GASOLINE				Prep Date:	01/23/07				
Analyte	F	Result	EQL	Dil	Units	Code	Anl Date	Prep Method	Anl Method
TPH - Gasoline	2	200	100	1	ug/L		01/23/07	SW846 5030B	SW846 M8015

Analytical Report Number: 880335

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client :	TRICORE ENVIRONMENTAL, LLC.	Matrix Type: WATER
Proiect Name :	FORMER CLARK #646	Collection Date: 01/19/07
Project Number :		Report Date: 01/26/07
Field ID :		Lab Sample Number: 880335-008

ſ

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Barium		130	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Cadmium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Chromium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Lead	<	7,5	7.5	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Mercury	<	0.20	0.20	1	ug/L		01/23/07	SW846 7470A	SW846 7470A
Selenium	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Silver	<	10	10	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
COD		96	20	1	mg/L		01/22/07	EPA 410.4	EPA 410.4
Nitrogen, Total Kjeldahl		1.1	1.0	1	mg/L		01/24/07	EPA 351.2	EPA 351.2
Phosphorus	<	0.50	0.50	1	mg/L		01/23/07	EPA 365.4	EPA 365.4
TPH - GASOLINE				Prep Date:	01/23/07				
Analyte	F	Result	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
TPH - Gasoline	1	2000	2500	25	ug/L		01/23/07	SW846 5030B	SW846 M8015

Analytical Report Number: 880335

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type: WATER

Report Date: 01/26/07

Collection Date: 01/19/07

Lab Sample Number: 880335-009

Client: TRICORE ENVIRONMENTAL, LLC. Project Name : FORMER CLARK #646 Project Number: 100018 Field ID: MW-26

ĺ

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Barium		55	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Cadmium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Chromium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Lead	<	7.5	7,5	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Mercury	<	0.20	0.20	1	ug/L		01/23/07	SW846 7470A	SW846 7470A
Selenium	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Silver	<	10	10	1 ,	ug/L		01/24/07	SW846 3010A	SW846 6010B
COD		66	20	1	mg/L		01/22/07	EPA 410.4	EPA 410.4
Nitrogen, Total Kjeldahl	<	1.0	1.0	1	mg/L		01/24/07	EPA 351.2	EPA 351.2
Phosphorus	<	0.50	0.50	1	mg/L		01/23/07	EPA 365.4	EPA 365.4
TPH - GASOLINE				Prep Date:	01/23/07				
Analyte	F	Result	EQL	Di l .	Units	Code	Ani Date	Prep Method	Anl Method
TPH - Gasoline	1	30	100	1	ug/L		01/23/07	SW846 5030B	SW846 M8015

Analytical Report Number: 880335

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client : TRICORE ENVIRONMENTAL, LLC. Project Name : FORMER CLARK #646 Project Number : 100018 Field ID : MW-18

ſ

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Arsenic	<	20	20	1 .	ug/L		01/24/07	SW846 3010A	SW846 6010B
Barium		170	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Cadmium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Chromium	<	5.0	5.0	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Lead	<	7.5	7.5	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Mercury	<	0.20	0.20	1	ug/L		01/23/07	SW846 7470A	SW846 7470A
Selenium	<	20	20	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
Silver	<	10	10	1	ug/L		01/24/07	SW846 3010A	SW846 6010B
COD	<	21	21	1	mg/L		01/22/07	EPA 410.4	EPA 410.4
Nitrogen, Total Kjeldahl		8.5	1.0	1	mg/L		01/24/07	EPA 351.2	EPA 351.2
Phosphorus		0.50	0.50	1	mg/L		01/23/07	EPA 365.4	EPA 365.4
TPH - GASOLINE				Prep Date:	01/23/07				
Analyte	R	esult	EQL	Dil.	Units	Code	e Ani Date	Prep Method	Anl Method
TPH - Gasoline	< 1(00	100	1	ug/L		01/23/07	SW846 5030B	SW846 M8015

(

Î.

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupID	Field ID	Comment
880335-002	TPHGAS-S	SB-34 @ 8-10	Sample exhibits hydrocarbon pattern resembling weathered gasoline.
880335-006	TPHGAS-W	MW-1	Sample exhibits hydrocarbon pattern resembling gasoline.
880335-008	TPHGAS-W	MW-2	Sample exhibits hydrocarbon pattern resembling gasoline.

Qualifier Codes Flag Applies To Explanation

Ê

Flag	Applies To	Explanation
Ā	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Ξ	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte ha been confirmed by and reported from an alternate method.
=	Organic	Surrogate results outside control criteria.
G .	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
، ۱	All	Preservation, extraction or analysis performed past holding time.
IF I	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
,	A11	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
. (Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
,	A11	Elevated detection limit due to low sample volume.
(Organic	Sample pH was greater than 2
A	All	Spiked sample recovery not within control limits.
(Organic	Sample received overweight.
(Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
į A	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
A	di .	The analyte was not detected at or above the reporting limit.
Д	.11	Sample received with headspace.
β		A second aliquot of sample was analyzed from a container with headspace.
A		See Sample Narrative.
С	rganics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
A	and a second sec	Laboratory Control Spike recovery not within control limits.
А	11	Precision not within control limits.
Ir	organic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
А	11 -	The analyte was not detected at or above the reporting limit.
Ir		Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
In	-	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
In		3OD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
In	ť	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and ry to correct the deficiency.
)n	- r	3OD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to eanalyze and try to correct the deficiency.
In	a	3OD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
In	– r	OD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to eanalyze and try to correct the deficiency.
In		ample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.
	organic S	ample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample

ł

Analysis Summary by Laboratory

ĺ

Test Group Name	880335-001	880335-002	880335-003	880335-004	880335-005	880335-006	880335-007	880335-008	880335-009	880335-010	
ARSENIC	В	В	В	В	В	В	В	В	В	В	
BARIUM	В	В	в	в	В	в	в	В	В	В	
CADMIUM	В	В	в	В	В	В	в	В	В	В	
CHROMIUM	В	В	В	в	В	в	В	В	В	в	
COD						В	В	В	В	В	
COD - SOLUBLE	В	В	В	В	В						
LEAD	В	В	В	В	В	В	В	В	В	в	
MERCURY	В	В	В	В	В	в	В	В	В	В	
NITROGEN, TOTAL KJELDAHL						в	В	в	В	В	
PERCENT SOLIDS	В	В	в	В	В						
PHOSPHORUS, TOTAL						в	В	в	в	В	
SELENIUM	В	В	в	В	В	В	в	В	В	в	
SILVER	В	В	В	В	В	в	в	В	В	В	
TPH - GASOLINE	G	G	G	G	G	G	G	G	G	G	

Code	Facility	Address	IL Certification	
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	200050	
G	Green Bay Lab (Industrial Dr)	1795 Industrial Drive Green Bay, WI 54302	200051	

Pace Analytica Services, Inc.						(QC Summ	າary						Green 920-46	Bellevue Bay, Wi 59-2436	54302
Batch: Lab Section: QC Batch Numb Prep Method: Analytical Metho Client Sample ID MW-1 MW-2 MW-18	WE ber: 178 EPA bd: EPA	0335 ETCHE 306 A 410.4 A 410.4 Lab San 880335-00 880335-00 880335-00	4 4 mple ID M ¹⁰⁶ M	MBID MB MB MB	 	Clie MW- MW-			QC Type MB LCS MS MSD Lab Sam 880335-00 880335-00	WCG WCG MW-1 MW-1 nple ID	t Sample ID 1928-099MB 1928-099MBLC 8MS 8MSD MB ID MB MB	CS	Lab Sample WCG1928-09 WCG1928-09 880335-010M 880335-010M	D 9MB 9MBLCS S	20-469-{ 	1827
Test Name	Method Blank Result Conc	LCS Spiked Conc	LCS Recove Conc %	rery Spi	_CSD Recovery Conc % C	LCS/ LCSD RPD % C	LCS/LCSD Control Limits LCL UCL RPD % % %	Parent Sample Number	Result	MS Spiked	MS Recovery	MSD Spiked	MSD Recovery	MS/ MSD RPD	Contr	G/MSD rol Limits JCL RPD
COD	< 9.7	400.0	399.5 99.9	,	 		90 110 10	880335-01		Conc 208.3	Conc % C 234.3 103.5	Conc 208.3	Conc % C 220.8 97.0	% C 5.9		% % 110 10

Conc = mg/L unless otherwise noted

C = QC Code, see Qualifer Sheet

<u>___</u>___

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Report Date: 1/26/2007

QC Batch Number: 17806

Page 15

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Batch: Lab Section:)335 TALC										2С Туре	Clien	t Samp	le ID		Lab	Sample I				
QC Batch Num Prep Method: Analytical Meth		er: 178 SW	/846 7							v		ן ז ז ז ז	MB LCS MS MS MS MSD MSD MSD	MBW LCSV MW 8802; 8802; MW 8802;	MTG19 VMTG1 IMS 55-0031 26-0011 IMSD 55-0031	985-68 985-68 MS MS MSD	3	MBV LCS 8803 8802 8802 8803 8803	VMTG198 WMTG19 335-006M 255-003M 226-001M 335-006M 225-003M	5-68 85-68 S S S SD SD			
Client Sample ID MW-1 MW-2 MW-18	-1		Lab Sar 880335-0 880335-0 880335-0)06)08) MB (MB MB MB	D	-	 MΜ	ent Sa /-11S /-26	mple	ID	I		mple ID	26-0011 MB MB MB			8802	226-001M	SD			
Test Name		Method Blank Result Conc	LCS Spiked Conc	LCS F Conc	Recovery % C	LCSD Spiked Conc	LCSD F Conc	 LCS/ LCSE ry RPD C % C	Co LCL	CS/LCS Introl Li UCL %	mits	Parent Sample Number	Parent Result Conc	MS Spiked Conc	MS R Conc	ecovery %	•		Recovery	MS/ MSD RPD	Cor LCL	AS/MS htrol Li	mits
Mercury	<	0.072	5.0	5	100.7			 -	85	115	20	880226-001	< 0.072	5.0	5.1	101.1	C Conc 5.0	Conc		% (%	%
Mercury	< {	0.072	5.0	5	100.7			 	85	115	20	880255-003	< 0.072	5.0	5.2	103.8	5.0	5.1	101.1	0.0	85	115	20
Mercury	<	0.072	5.0	5	100.7			 	85	115	20	880335-006			5.2	103.9	5.0	5.3 5.2	105.4	1.6 0.1	85 85	115	20

Conc = ug/L unless otherwise noted

C = QC Code, see Qualifer Sheet

Report Date: 1/26/2007

QC Batch Number: 17807

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Page 16

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Batch: Lab Section:)335 ETCHE	Ъ. Л.							Rectory	(ОС Туре	Clien	t Sample ID		Lab S	Sample II		20-409	-0027	
QC Batch Num Prep Method:	ıbe	r: 178										Į	MB LCS	WCG	2101-075MB 2101-075MBL	CS	WCG	2101-07				
Analytical Meth	lod											ז ו ו	MS MS MSD MSD	MW- ⁻ 8802	37-001MS 18MS 81-003MS 37-001MSD		88033 88028	37-001M 35-010M 31-003M 37-001M	S S		·	
MW-1 MW-2 MW-18			Lab Sar 880335-0 880335-0 880335-0	06 08	MB MB MB MB	D			Clie MW- MW-		le ID		MSD MSD Lab Sar 880335-0 880335-0	8802 nple ID ⁰⁷	18MSD 81-003MSD MB ID ^{MB} MB			35-010M 31-003M				
Test Name		Method Blank Result Conc	LCS Spiked Conc	LCS F Conc	Recovery % (LCSD Spiked Conc	LCSD I Conc	ry R	CS/ CSD RPD 6 C	LCS/L Control LCL UC % %	Limits	Parent Sample Number	Parent Result	MS Spiked		MSD Spiked	MSD R	Recovery	MS/ MSD RPD	Сол	IS/MSI trol Lir UCL	
Phosphorus	<	0.13	5.0	4.6	92.3		<u> </u>	 		90 11		880335-010	Conc	Conc	Conc % C		Conc	% C	% C		%	%
Phosphorus	<	0.13	5.0	4.6	92.3			 -	-	90 11		880337-001	< 0.13 2.3	5.0 5.0	4.9 98.5 7.1 95.9	5.0 5.0	4.9 7	98.8 93.7	0.3 1.6	90 90	110 110	20 20

Conc = mg/L unless otherwise noted

C = QC Code, see Qualifer Sheet

Report Date: 1/26/2007

QC Batch Number: 17812

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form,

Page 17

Pace Analytica Services, Inc.	al						(QC	Summ	nary								Gree 920-	n Bay 469-2		
Batch: Lab Section: QC Batch Numb Prep Method: Analytical Metho	GA ber: 178 SW			3				<u>.</u>			QC Type MB LCS LCSD	GG2 ² GG2 ²	It Samp 127-12N 127-12N 127-12N	∕IB ∕IBLCS	D	GG2 GG2	Sample 2127-12N 2127-12N 2127-12N	ID IB IBLCS		169-8827	
Client Sample ID MW-1 MW-2 MW-18		Lab Sar 880335-0 880335-0 880335-0	06 08	МВ МВ МВ МВ	D			-11S	mple ID		Lab San 880335-00 880335-00	707	MB MB MB	D							
Test Name TPH - Gasoline	Method Blank Result Conc	LCS Spiked Conc 1000.0	LCS Re Conc 1068.1	ecovery % C 107	LCSD Spiked Conc 1000.0	LCSD Recovery Conc % C 1057.5 106		Cor LCL	CS/LCSD htrol Limits UCL RPD % % 117 20	Parent Sample Number	Result	MS Spiked Conc	MS Re Conc	ecovery % C		MSD Conc	Recovery % C		LC C %		PD

Conc = ug/L unless otherwise noted Report Date: 1/26/2007 C = QC Code, see Qualifer Sheet Parent Result is reported down to MDL in order to allow Validation of this worksheet QC Batch Number: 17818 The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.
Pace Analytical Services, Inc.

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Batch: Lab Section:		0335 ETCHE	: N Л								QC Туре	Clien	it Sample ID		Lab Sample I			1
QC Batch Numbe			.1V1								MB LCS		2101-076MB		WCG2101-07	6MB		
Prep Method:		A 351.									MS	8803	2101-076MBL0 56-003MS	cs	WCG2101-07 880356-003M		i	
Analytical Method	: EP										MS MSD MSD	8803	81-003MS 56-003MSD 81-003MSD		880281-003M 880356-003M 880281-003M	SD		
 Client Sample ID MW-1 MW-2 MW-18		Lab Sar 880335-0 880335-0 880335-0	006 108	MB [[MB MB MB)		M۱	ient San V-11S V-26	iple ID		Lab San 880335-00 880335-00	07	MB ID MB MB					
	Method Blank Result Conc	LCS Spiked Conc	LCS Rei	covery % C	LCSD Spiked Conc	LCSD Recov Conc %	- 1	Cont LCL	S/LCSD rol Limits UCL RPD	Parent Sample	Parent Result	MS Spiked	MS Recovery	MSD Spiked	MSD Recovery	MS/ MSD RPD	MS/MS Control Li	mits
Nitrogen, Total Kjeldahl <	0.48	5.0		97,9			C % (C % 90	% % 110 20	Number 880356-003	Conc 1.5	Conc 5.0	Conc % C 6.9 108.0		Mob Recovery Conc % C 6.9 108.5	6.4	LCL UCL % % 90 110	RPD % 20

Conc = mg/L unless otherwise noted C = QC Code, see Qualifer Sheet

Report Date: 1/26/2007

QC Batch Number: 17828

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Services, Inc	cal c.								QC	Sumn	nary							Gree 920-4	Bellevi n Bay, 169-243 920-46	WI 543 36	302
Batch: Lab Section: QC Batch Num Prep Method: Analytical Meth	ME 178 SW)335 TALS 337 /846 34 /846 64								<u></u>		QC Type MB LCS MS MSD	MBW			MBV LCS 8803	Sample I VMTG208 WMTG20 335-006M 335-006M	D 32-48 82-48 S			
Client Sample ID MW-1 MW-2 MW-18		Lab Sar 880335-0 880335-0 880335-0	06 08	MB I MB MB MB	D				-11S	mple ID		Lab Sam 880335-00 880335-00	57	MB ID MB MB					·		
	Method							LCS/		CS/LCSD								MS/		MS/MSI	D mits
Test Name	Blank Result Conc	LCS Spiked Conc	LCS F Conc	Recovery % C	LCSD Spiked Conc	LCSD F Conc	lecovery % C		LCL	UCL RPD	1	Parent Result	MS Spiked	MS Recovery	MSD Spiked	MSD	Recovery	MSJ MSD RPD			RPD
Arsenic	Result Conc < 7.6	Spiked Conc 500.0	Conc 512.3	% C 102.5	Spiked			RPD	LCL	UCL RPD % %	Sample Number	Result Conc	Spiked Conc	Conc % C	Spiked Conc	Conc	% C	MSD RPD	LCL		RPD %
Arsenic Barium	Result Conc <	Spiked Conc 500.0 500.0	Conc 512.3 494.6	% C 102.5 98.9	Spiked Conc	Conc	% (RPD	LCL %	UCL RPD % %	Sample	Result Conc 6 7.6	Spiked Conc 500.0	Conc % C 515.5 103.1	Spiked Conc 500.0	Conc 511	% C	MSD RPD % (LCL	UCL	RPD % 20
Arsenic Barium Cadmium	Result Conc <	Spiked Conc 500.0 500.0 500.0	Conc 512.3 494.6 501.3	% C 102.5 98.9 100.3	Spiked Conc	Conc	% 0	RPD % C	LCL % 80	UCL RPD % % 120 20	Sample Number 880335-006	Result Conc 0 7.6 0 186.5	Spiked Conc 500.0 500.0	Conc % C 515.5 103.1 689 100.5	Spiked Conc 500.0 500.0	Conc 511 677.9	% C 102.2 98.3	MSD RPD % (0.9 1.6	LCL % 75 75	UCL % 125 125	%
Arsenic Barlum Cadmium Chromium	Result Conc <	Spiked Conc 500.0 500.0 500.0 500.0	Conc 512.3 494.6 501.3 515.3	% C 102.5 98.9 100.3 103.1	Spiked Conc	Conc 	% C	RPD % C	LCL % 80 80	UCL RPD % % 120 20 120 20	Sample Number 880335-006 880335-006	Result Conc 0 <	Spiked Conc 500.0	Conc % C 515.5 103.1 689 100.5 485.1 97.0	Spiked Conc 500.0 500.0 500.0	Conc 511 677.9 481.6	% C 102.2	MSD RPD % (0.9 1.6 0.7	LCL % 75 75 75	UCL % 125 125 125	% 20 20 20
Arsenic Barlum Cadmium Chromium Lead	Result Conc <	Spiked Conc 500.0 500.0 500.0 500.0 500.0	Conc 512.3 494.6 501.3 515.3 508.3	% C 102.5 98.9 100.3 103.1 101.7 101.7	Spiked Conc 	Conc 	% C	RPD % C	LCL % 80 80 80	UCL RPD % % 120 20 120 20 120 20	Sample Number 880335-006 880335-006 880335-006	Result Conc 0 <	Spiked Conc 500.0 500.0 500.0	Conc % C 515.5 103.1 689 100.5 485.1 97.0 511.1 102.2	Spiked Conc 500.0 500.0 500.0 500.0	Conc 511 677.9 481.6 507.5	% C 102.2 98.3 96.3 101.5	MSD RPD % (0.9 1.6 0.7 0.7	LCL % 75 75 75 75 75 75	UCL % 125 125 125 125 125	% 20 20 20 20
Test Name Arsenic Barium Cadmium Chromium Lead Selenium Silver	Result Conc <	Spiked Conc 500.0 500.0 500.0 500.0	Conc 512.3 494.6 501.3 515.3	% C 102.5 98.9 100.3 103.1	Spiked Conc 	Conc 	% C	RPD % C 	LCL % 80 80 80 80 80	UCL RPD % % 120 20 120 20 120 20 120 20	Sample Number 880335-006 880335-006 880335-006 880335-006	Result Conc 0 <	Spiked Conc 500.0 500.0 500.0 500.0	Conc % C 515.5 103.1 689 100.5 485.1 97.0 511.1 102.2	Spiked Conc 500.0 500.0 500.0	Conc 511 677.9 481.6	% C 102.2	MSD RPD % (0.9 1.6 0.7	LCL % 75 75 75	UCL % 125 125 125	% 20 20 20

Conc = ug/L unless otherwise noted C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

Report Date: 1/26/2007

QC Batch Number: 17837

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Page 22

Company Name:	Til		1	9								MIDWES				Page 1	of
Branch/Location:	TriCore				-	Ana	h dia	~1*			MIN: 61	12-607-17	00 W	/1: 920-469-2436			
	West Chicago, Marcos Czako	th_	1 /		-dlt	HIM		đi									
Project Contact:		•				-							Г	Quote #:	1		
Phone:	1230-520-9973			C	;HA	١N	OF		US 1	ГОГ	אר		-	Mail To Contact:			
Project Number:			A=N0		HCL C=		*Preserva	tion Cod	88			1	-	······································		3 Czako	
Project Name:	Former Clark	1046	4 1	odium Bisul			D=HNO3	n Thiosulf		=Methano Other	G=Na	аOH	Ļ	Mail To Company:	TriCo	re,	
Project State:	IL	<u> </u>		RED?				- •	Т			······		Mail To Address:	1800 M	. How than	ref
Sampled By (Print	D. Laik 18 June 11		-	S/NO) RVATION	Y/N Pick		N	N							West	Chicago,	π
Sampled By (Sign	Patrick Warrall		(CO	DE)*	Pick Latter	B	C	D						Invoice To Contact:	Shaw	re . How thom CW cago,. n Rodeck	
PO #:	per	Regulatory	ļ				3						T	Invoice To Company:	TriCor	•	
		Program:			este		5	5					F	Invoice To Address:	C	e As Ale	·····
Data Package ((biliable)		Mat A = Air	trix Code: W = Water	5		0	Phosph	-E							Joan		
EPA Lev	rel III (billable)	B ≈ Blota C ≈ Charcoat	DW = Drinki GW = Grou	ing Water nd Water	88	Ň,	NY AN	X					\vdash				
EPA Lev	vel IV INOT needed on	O = Oil S = Soil	SW ≈ Surfa WW = Wasi	ce Water	Analys	- V - L								Invoice To Phone:			
PACE LAB'#			WP = Wipe ECTION	MATRIX	2	PH	65	RG			1		Γ	CLIENT	LAB C	OMMENTS	F
001 M	N-15	DATE	TIME	1		<u> </u>	VF							COMMENTS	(Lab	Use Only)	
1		6-90	1300	GW		X	X	X							3-4h	nl - 25	ha
002 M	w-18	72.90	1235	GW		X	×	X							12 301	incon 0.00	JYY
										·							
							1	1			********	├─── <u></u> ├─					
· .	and the second statement of the second statement of the second statement of the second statement of the second						1					<u>├</u>					
							<u>†</u>										
							1		<u> </u>								
				·			<u> </u>								_		
				+			┼───										
	*****	_															
							·	L								· · · · · · · · · · · · · · · · · · ·	
											·····	[
Ruch Turner	Olind Time Day					20 A C	1										·····
(Rush TAT	ound Time Requested - Preli subject to approval/surcharge	ms Rell	nquished By:		1		Da	te/Time:	· · · · · · · · · · · ·		Received	1 By	77	D_≰te/Time/		PACE Pr	olant I
Da	ate Needed: Standard	Reli	nquished By			4			1350	0		Y	mà	<1 6/24/n	8 1350	1 11.	- jour 1
Transmit Prelim R	ush Results by (complete what you y	vant):	4	Mit	ont	-6	1241	ate Time:	17	00	Received	184.11	(97	(Date/Time:	· · · · · · · · · · · · · · · · · · ·	1 405	<u>56</u>
Email #2:	zako@comcast.net	Reli	nquished Br:	tra	V	1.1	. 6.	te/Time	-		Received	d By:	\sim	Date/Time:		Recaipt Temp =	20
Telephone:		Reli	nquished By:	w	/	ΨĮ,	<u>2510</u>	-	910		لف		U	Schutler	35/08	Sample R	eceip
Fax:							U2	ate/Time:			Received	19% (C)	Date/Time:		OK / A	ljuste
	es on HOLD are subject to ricing and release of liability	Reli	nquished By:				Da	ate/Time:			Received	d By:		Date/Time:		Cooler Cu	
														2010/1018.		Intact/ M	

	Sample Condition Upon Rec	eipt
Pace Analytical Client Nar	me: Tri Corc	Project # <u>405568</u> _
└ Courler: ☐ Fed Ex ☐ UPS ☐ USPS ☐ □ Tracking #:	Client 🗌 Commercial 🗌 Pace Oth	her Walta
Custody Seal on Cooler/Box Present:	ves 🗌 no Seals intact: 🖉 y	es 🗍 no
Packing Material: Bubble Wrap	6	
Thermometer Used N/A	Type of Ice: ,Wet Blue None	Samples on ice, cooling process has begu
Cooler Temperature	Biological Tissue is Frozen: Yes Comments:	Date and initials of person examinin
Chain of Custody Present:	TYes DNO DN/A 1.	
Chain of Custody Filled Out:	Yes DNo DN/A 2.	
Chain of Custody Relinguished:	ETYes INO IN/A 3.	
Sampler Name & Signature on COC:	TYPS INO IN/A 4.	
Samples Arrived within Hold Time:	ØYes □No □N/A 5.	
Short Hold Time Analysis (<72hr):	Yes INO DN/A 6.	
Rush Turn Around Time Requested:		
Sufficient Volume:	Yes INO IN/A 8.	
Correct Containers Used:	Yes INO IN/A 9.	
-Pace Containers Used:		
Containers Intact:	Pres INO IN/A 10.	
Filtered volume received for Dissolved tests	DYes DNo DN/A 11.	
Sample Labels match COC:	12 Yes DNo DN/A 12.	
-Includes date/time/ID/Analysis Matrix:		
All containers needing preservation have been checked.	ØŸes □No □N/A 13.	
All containers needing preservation are found to be in compliance with EPA recommendation.		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	Pres INo Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □N/A 14.	
Headspace in VOA Vials (>6mm):	□Yes □No □N/A 15.	
Trip Blank Present:	□Yes □No /□N/A 16.	
Trip Blank Custody Seals Present	DYes DNO DN/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	Date/Time:	Field Data Required? Y / N
Project Manager Review:	Lu	Date: 4/24 or

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

1055108

This page can be completed online.

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Pallure to disclose this information may result in a civil penalty of not to exceed \$30,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/4, 2/57 - 57.17). Pallure to disclose this information may result in a civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a faite material statement or representation in any label, manifest, record, report, penalt, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 feloay. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/57 17). This form has been approved by the Form Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

A. Site Identification

IEMA Incident #:8			0971855024	
Site Name: Forme	r Clark Retail Station #	646		
Site Address (Not a P.O. F	200 Meet Liberty S			
City: Wauconda	County:	Lake	ZIP Code:	60084

B. Sample Collector

I certify that:

- 1. Appropriate sampling equipment/methods were utilized to obtain representative samples.
- 2. Chain-of-custody procedures were followed in the field.
- 3. Sample integrity was maintained by proper preservation.
- 4. All samples were properly labeled.

C. Laboratory Representative

I certify that:

- 1. Proper chain-of-custody procedures were followed as documented on the chain-of-custody forms
- 2. Sample integrity was maintained by proper preservation.
- 3. All samples were properly labeled.

IL 532 2283 LPC 509 Rev. June 2002

Laboratory Certification for Chemical Analysis 1 of 2

(initial)

(initial)

This page can be completed online

- 4. Quality assurance/quality control procedures were established and carried out.
- 5. Sample holding times were not exceeded.
- 6. SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.
- 7. An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003).

D. Signatures

I hereby affirm that all information contained in this form is true and accurate to the best of my knowledge and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Sample Collector

Name: Patrick Worrall
Title:
Company: TriCore Environmental, LLC
Address:1800 West Hawthorne Lane, Suite P
City, State, ZIP: West Chicago, Illinois 60185
Phone: 630-520-9973
Signature:
Date:
Laboratory Representative

Laurie Woelfel Name: Project Manager Title: Pace Analytical 1241 Bellevue Street Company: Green Bay, WI 54302 Address: _____ 920-469-2436 City, State, ZIP: Phone: Signature: Date:

Laboratory Certification for Chemical Analysis 2 of 2

Jan (initial)

> ŁΨ (initial)

KW) (initial)

 (μ) (initial)

405768

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

July 03, 2008

Marcos Czako TriCore Environmental, LLC. 1800 West Hawthorne Lane Suite P West Chicago, IL 60185

RE: Project: FORMER CLARK #646 Pace Project No.: 405568

Dear Marcos Czako:

Enclosed are the analytical results for sample(s) received by the laboratory on June 25, 2008. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Laurie Woelfel

Laurie Woelfel

laurie.woelfel@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Page 1 of 13

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: FORMER CLARK #646 Pace Project No.: 405568

Green Bay Certification IDs Florida (NELAP) Certification #: E87948 Illinois Certification #: 200050 California Certification #: 06246CA New York Certification #: 11888 North Dakota Certification #: R-150 North Carolina Certification #: 503 Minnesota Certification #: 055-999-334 South Carolina Certification #: 83006001 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 Kentucky Certification #: 82 Louisiana Certification #: 04168

Green Bay Volatiles Certification IDs

Florida (NELAP) Certification #: E87951 California Certification #: 06247CA Illinois Certification #: 200051 New York Certification #: 11887 North Dakota Certification #: R-200 North Carolina Certification #: 503 Minnesota Certification #: 055-999-334 South Carolina Certification #: 83006001 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 Kentucky Certification #: 83 Louisiana Certification #: 04169

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelaci

Face Analytical[®]

SAMPLE SUMMARY

Project: Pace Project N	FORMER CLARK #646 lo.: 405568			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
405568001	MW-15	Water	06/23/08 13:00	06/25/08 09:10
405568002	MW-18	Water	06/23/08 12:35	06/25/08 09:10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical[®]

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 (920)469-2436

SAMPLE ANALYTE COUNT

Lab ID Sample ID Interfect P P 405568001 MW-15 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7 405568002 MW-18 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7	Project: Pace Project N	FORMER CLARK #646 No.: 405568				
4055568001 MW-15 EFA 365.2 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7 EPA 7470 LMS 1 EPA 365.4 DAW 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7 EPA 6010 DLB 7 EPA 6010 DLB 7	Lab ID	Sample ID	Method	Analysts	-	Laboratory
EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7 EPA 7470 LMS 1 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7	405568001		EPA 351.2	DAW	1	PASI-G
EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7 EPA 7470 LMS 1 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7			EPA 365.4	DAW	1	PASI-G
EPA 6010 DLB 7 EPA 7470 LMS 1 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7			EPA 410.4	RRS	1	PASI-G
EPA 7470 LMS 1 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7			EPA 5030/8015 Mod.	SES	1	PASI-G
MW-18 EPA 351.2 DAW 1 EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 6010 DLB 7			EPA 6010	DLB	7	PASI-G
EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7			EPA 7470	LMS	1	PASI-G
EPA 365.4 DAW 1 EPA 410.4 RRS 1 EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7	05568002	MW-18	EPA 351.2	DAW	1	PASI-G
EPA 5030/8015 Mod. SES 1 EPA 6010 DLB 7	0000001		EPA 365.4	DAW	1	PASI-G
EPA 6010 DLB 7			EPA 410.4	RRS	1	PASI-G
			EPA 5030/8015 Mod.	SES	1	PASI-G
EDA 7470 IMS 1			EPA 6010	DLB	7	PASI-G
			EPA 7470	LMS	1	PASI-G

REPORT OF LABORATORY ANALYSIS

Page 4 of 13

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical® www.pacelabs.com

ANALYTICAL RESULTS

Project: FORMER CL Pace Project No.: 405568	ARK #646							
Sample: MW-15	Lab ID: 405568001	Collected	d: 06/23/0	8 13:00	D Received: 06	6/25/08 09:10 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Gasoline Range Organics	Analytical Method: EF	A 5030/8015 M	lod.					
TPH (C06-C10)	460 ug/L	100	39.6	1		06/30/08 16:12		
6010 MET ICP	Analytical Method: EF	A 6010 Prepar	ation Meth	od: EP	A 3010			
Arsenic	<1.2 ug/L	20.0	1.2	1	06/30/08 08:13			
Barium	98.8 ug/L	5.0	0.33	1	06/30/08 08:13			
Cadmium	0.58J ug/L	5.0	0.13	1	06/30/08 08:13			В
Chromium	<1.1 ug/L	5.0	1.1	1	06/30/08 08:13			
Lead	4.4J ug/L	10.0	1.4	1	06/30/08 08:13	06/30/08 21:47		
Selenium	<1.6 ug/L	20.0	1.6	1	06/30/08 08:13	06/30/08 21:47		
Silver	<0.34 ug/L	10.0	0.34	1	06/30/08 08:13	06/30/08 21:47	7440-22-4	
7470 Mercury	Analytical Method: EP	A 7470 Prepara	ation Metho	od: EP/	A 7470			
Mercury	<0.10 ug/L	0.20	0.10	1	06/26/08 16:33	06/27/08 11:27	7439-97-6	
351.2 Total Kjeldahl Nitrogen	Analytical Method: EP	A 351.2						
Nitrogen, Kjeldahl, Total	1.2 mg/L	1.0	0.42	1		06/27/08 15:39	7727-37-9	
365.4 Total Phosphorus	Analytical Method: EP	A 365.4						
Phosphorus	<0.1 7 mg/L	0.50	0.17	1		06/27/08 13:57	7723-14-0	
410.4 COD	Analytical Method: EPA	410.4						
Chemical Oxygen Demand	35.3J mg/L	50.0	10.8	1		07/01/08 15:40		

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

ANALYTICAL RESULTS

Project: FORMER CLA Pace Project No.: 405568	ARK #646							
Sample: MW-18	Lab ID: 405568002	Collected	: 06/23/08	8 12:35	6 Received: 06	8/25/08 09:10 N	latrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Gasoline Range Organics	Analytical Method: EPA	5030/8015 M	od.					
TPH (C06-C10)	<39.6 ug/L	100	39.6	1		06/30/08 14:55	i	
6010 MET ICP	Analytical Method: EPA	6010 Prepara	ation Metho	od: EP/	A 3010			
Arsenic	14.0J ug/L	20.0	1.2	1	06/30/08 08:13	06/30/08 21:51	7440-38-2	
Barium	176 ug/L	5.0	0.33	1	06/30/08 08:13	06/30/08 21:51	7440-39-3	
Cadmium	0.14J ug/L	5.0	0.13	1	06/30/08 08:13	06/30/08 21:51		В
Chromium	1.2J ug/L	5.0	1.1	1	06/30/08 08:13	06/30/08 21:51		
Lead	3.9J ug/L	10.0	1.4	1	06/30/08 08:13	06/30/08 21:51		
Selenium	<1.6 ug/L	20.0	1.6	1	06/30/08 08:13	06/30/08 21:51		
Silver	<0.34 ug/L	10.0	0.34	1	06/30/08 08:13	06/ 3 0/08 21:51	/440-22-4	
7470 Mercury	Analytical Method: EPA	7470 Prepara	tion Metha	d: EPA	7470			
Mercury	<0.10 ug/L	0.20	0.10	1	06/26/08 16:33	06/27/08 11:31	7439-97-6	
351.2 Total Kjeldahl Nitrogen	Analytical Method: EPA	351.2						
Nitrogen, Kjeldahl, Total	8.4 mg/L	1.0	0.42	1		06/27/08 15:39	7727-37-9	MO
365.4 Total Phosphorus	Analytical Method: EPA	365.4						
Phosphorus	0.18J mg/L	0.50	0.17	1		06/27/08 13:58	7723-14-0	
410.4 COD	Analytical Method: EPA	410.4						
Chemical Oxygen Demand	1 7.4J mg/L	50.0	10.8	1		07/01/08 15:40		

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical www.pacelabs.com

, iejeeu	FORMER C 405568	LARK #646	5										
QC Batch:	MERP/114	8		Analy	/sis Metho	d:	EPA 7470						
QC Batch Method:	EPA 7470			Analy	/sis Descri	ption:	7470 Mercur	У					
Associated Lab Sam	ples: 405	568001, 40	5568002										
METHOD BLANK:	45884		<u> </u>										
Associated Lab Samp	oles: 405	568001, 40	5568002										
Parame	eter		Units	Blar Resi		Reporting Limit	Qualifie	rs					
Mercury	-	ug/L			<0.10	0.20	0						
LABORATORY CON	ROL SAMP	PLE: 4588	35										
				Spike	LC	S	LCS	% Re	с				
Parame	eter		Units	Conc.	Res	ult	% Rec	Limits	6 (Qualifiers	_		
Mercury		ug/L		(5	5.6	111	8	5-115				
MATRIX SPIKE & MA			TE: 45886			45887							
				MS	MSD								
			405568001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Quai
Mercury		ug/L	<0.10	5	5	5.4	5.4	107	10	8 85-115	.5	20	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: FC	ORMER CLARK #64	46										
Pace Project No.: 40)5568											
QC Batch: V	WETA/1838		Anal	ysis Metho	d:	EPA 365.4						
QC Batch Method: E	EPA 365.4		Anal	ysis Descri	ption:	365.4 Phos	phorus					
Associated Lab Sample	es: 405568001,4	05568002										
METHOD BLANK: 45	971		· · ·									
Associated Lab Sample	es: 405568001, 4	05568002										
			Blar		Reporting	_ *						
Paramete	er	Units	Res	ult 	Limit	Qualifi	ers					
Phosphorus	mg/	/L		<0.17	0.5	0						
LABORATORY CONTR	OL SAMPLE: 459	972						<u></u>				
			Spike	LC	S	LCS	% Re					
Paramete	r	Units	Conc.	Res	ult	% Rec	Limit	s C	ualifiers			
Phosphorus	mg/	L		5	4.9	98	9	0-110				
MATRIX SPIKE & MATR		ATE: 45973	3		45974							
			MS	MSD								
		405568002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Phosphorus	mg/L	0.18J	5	5	5.0	5.0	97	97	90-110	.6	20	
MATRIX SPIKE & MATR	IX SPIKE DUPLICA	TE: 45975	<u></u>		45976							
			MS	MSD								
		1075708001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
		···· · · · · · · · · · · · · · · · · ·										

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Project: FORME Pace Project No.: 405568	R CLARK #646										
QC Batch: WETA/	1845	Analys	is Method	1:	EPA 351.2	<u></u>		<u>.</u>			
QC Batch Method: EPA 35	51.2	Analys	is Descrip	otion:	351.2 TKN						
Associated Lab Samples:	405568001, 405568002										
METHOD BLANK: 46085				<u></u>		,					
Associated Lab Samples: 4	105568001, 405568002										
		Blank	F	Reporting							
Parameter	Units	Resul	t	Limit	Qualifier	S					
Nitrogen, Kjeldahl, Total	mg/L	<	0.42	1.0	0						
LABORATORY CONTROL SA	MPLE: 46086										
		Spike	LCS	6	LCS	% Red	;				
Parameter	Units	Conc.	Resu	lit	% Rec	Limits	G	ualifiers	_		
Nitragon Kieldehl Totel		5		5.0	100	90	-110				
mitrogen, Njeluani, Total	mg/L	Ũ		0.0							
nitrogen, Neidani, Total	mg/∟	Ū		0.0							
	·			46088							
Nitrogen, Kjeldahl, Total MATRIX SPIKE & MATRIX SP	·		MSD								
	·		MSD Spike		MSD	MS	MSD	% Rec		Мах	
	IKE DUPLICATE: 46087	MS		46088	MSD	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical[®]

	FORMER CLARK #646 405568										
QC Batch:	GCV/1807	w.	Analy	sis Method	d: E	PA 5030	/8015 Mc	od.			
QC Batch Method:	EPA 5030/8015 Mod.		-	sis Descrip		Basoline	Range Oi	rganics			
Associated Lab Sam	oles: 405568001, 4055	68002									
METHOD BLANK:	16277							- 4-18-9			
Associated Lab Samp	les: 405568001, 4055	68002									
			Blan	к Р	Reporting						
Parame	ter l	Jnits	Resu	lt	Limit	Qual	ifiers				
TPH (C06-C10)	ug/L			<39.6	100						
ABORATORY CONT	ROL SAMPLE & LCSD:	46278			46279						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parame	ter U	nits	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
ТРН (C06-C10)	ug/L		1000	1120	1150	112	115	80-120	2	20	••• · · · · · · · · · · · · · · · · · ·
MATRIX SPIKE & MA	RIX SPIKE DUPLICATE:	46916			46917						
			MS	MSD							
	40	5568002	Spike	Spike	MS	MSD	MS	MSD	% Re	-	Max
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Re	ec % Red	: Limite	RPD	RPD Qual
PH (C06-C10)	ug/L	<39.6	1000	1000	1000	101	0 1	100 10	01 66-12	24 .9	20

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:	FORMER CLARK #646				
Pace Project No.:	405568				
QC Batch:	MPRP/1496	Analysis Method:	EPA 6010		
QC Batch Method:	EPA 3010	Analysis Description:	6010 MET		
Associated Lab Sar	nples: 405568001, 405568002				

METHOD BLANK: 46768

Associated Lab Samples: 405568001, 405568002

Parameter	Units	Blank Result	Reporting Limit	Qualifiers
Arsenic	ug/L	<1.2	20.0	
Barium	ug/L	<0.33	5.0	
Cadmium	ug/L	0.15J	5.0	
Chromium	ug/L	<1.1	5.0	
Lead	ug/L	<1.4	10.0	
Selenium	ug/L	<1.6	20.0	
Silver	ug/L	<0.34	10.0	

LABORATORY CONTROL SAMPLE: 46769

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	ug/L	500	520	104	80-120	
Barium	ug/L	500	537	107	80-120	
Cadmium	ug/L	500	522	104	80-120	
Chromium	ug/L	500	512	102	80-120	
Lead	ug/L	500	505	101	80-120	
Selenium	ug/L	500	507	101	80-120	
Silver	ug/L	250	223	89	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 46770

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	ATE: 46770			46771							
Parameter	Units	405688035 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	ug/L		500	500	543	525	108	105	75-125	3	20	
Barium	ug/L	250	500	500	792	768	108	104	75-125	3	20	
Cadmium	ug/L	<0.13	500	500	550	530	110	106	75 - 125	4	20	
Chromium	ug/L	3.2J	500	500	509	491	101	98	75-125	4	20	
Lead	ug/L	1.8J	500	500	497	479	99	95	75-125	4	20	
Selenium	ug/L	2.0J	500	500	533	514	106	102	75-125	4	20	
Silver	ug/L	<0.34	250	250	240	230	96	92	75-125	4	20	

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

Page 11 of 13

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: FORMER Pace Project No.: 405568	CLARK #646										
QC Batch: WETA/1	864	Anal	ysis Method	d:	EPA 410.4					<u>.</u>	
QC Batch Method: EPA 410).4		ysis Descrij		410.4 COD						
Associated Lab Samples: 40	05568001, 405568002										
METHOD BLANK: 47560											
Associated Lab Samples: 4(5568001, 405568002										
Parameter	Units	Blar Resi		Reporting Limit	Qualifie	ers					
Chemical Oxygen Demand	mg/L		<10.8	50.	0						
LABORATORY CONTROL SAM	/PLE: 47561										
		Spike	LCS	5	LCS	% Re	c				
Parameter	Units	Conc.	Resu	ult	% Rec	Limits	. Q	ualifiers	_		
Chemical Oxygen Demand	mg/L	500	0	504	101	90)-110				
MATRIX SPIKE & MATRIX SPI	KE DUPLICATE: 47562	2		47563				,			
		MS	MSD								
	405736001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chemical Oxygen Demand	mg/L <11.3	526	526	538	543	101	102	90-110	.9	10	

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

*nelac

QUALIFIERS

Project:	FORMER CLARK #646
Pace Project No.:	405568

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- M0 Matrix spike recovery was outside laboratory control limits.

Date: 07/03/2008 08:55 AM

REPORT OF LABORATORY ANALYSIS

APPENDIX D

AMENDED CORRECTIVE ACTION BUDGET

General Information for the Budget and Billing Forms

LPC #:	0971855024 County: Lake						
City: <u>V</u>	auconda Site Name: Shivam Energy, Inc						
Site Ad	ress: 399 West Liberty Street						
IEMA Ir	cident No.: 892744 903199						
IEMA N	Dec 27, 1989 Oct 30, 1990						
Date thi	s form was prepared: Jun 4, 2009						
This fo	m is being submitted as a (check one, if applicable):						
	Budget Proposal						
\boxtimes	Budget Amendment (Budget amendments must include only the costs over the previous budget.)						
	Billing Package						
	Please provide the name(s) and date(s) of report(s) documenting the costs requested:						
	Name(s):						
	Date(s):						
This no.							
-	kage is being submitted for the site activities indicated below:						
35 III. Ad	l m. Code 734: Early Action						
	Free Product Removal after Early Action						
	Site Investigation						
\boxtimes	Corrective Action Actual Costs						
35 III. Ac	m. Code 732:						
	Early Action						
	Free Product Removal after Early Action						
	Site Classification						
	Low Priority Corrective Action						
	High Priority Corrective Action						
35 III. Ad	n. Code 731:						
	Site Investigation						
	Corrective Action						

General Information for the Budget and Billing Forms

The following address will be used as the mailing address for checks and any final determination letters regarding payment from the Fund.

Pay to the order of: Shivam Energy, Inc.			alaya aya aya aya aya aya aya aya aya ay
Send in care of: Shawn Rodeck			
Address: P.O. Box 825			
City: <u>Warrenville</u> St	ate: IL		Zip: <u>60555-0825</u>
The payee is the: Owner 🔀 Operator	(Chec	ck one or both.)	
Signature of the owner or operator of the UST(s) (requi	ired)		u have a change of address, <u>here</u> to print off a W-9 Form.
Number of petroleum USTs in Illinois presently owned parent or joint stock company of the owner or operato or joint stock company of the owner or operator:	d or operated b	y the owner or npany owned b	operator; any subsidiary, y any parent, subsidiary
Fewer than 101: 🛛 101 or more:			
Number of USTs at the site: 4 (Number have been removed.)	of USTs.includ	es USTs prese	ently at the site and USTs that
Number of incidents reported to IEMA for this site: $\frac{3}{2}$			
Incident Numbers assigned to the site due to releases	s from USTs:	892744	903199
20081812			
Please list all tanks that have ever been located at the	e site and tanks	s that are prese	ently located at the site.

Product Stored in UST	Size (gallons)	Did UST have a release?		Incident No.	Type of Release Tank Leak / Overfill / Piping Leak
Gasoline	6,000	Yes 🖂	No 🗌	892744 & 903199	Tank Leak
Gasoline	6,000	Yes 🖂	No 🗌	892744 & 903199	Tank Leak
Gasoline	10,000	Yes 🗌	No 🔀		
Gasoline	10,000	Yes 🗌	No 🖂		
		Yes 🗌	No 🗌		
· · · ·		Yes 🗌	No 🗌		
		Yes 🗌	No 🗌		
		Yes 🗌	No 🗌		
		Yes 🗌	No 🗌		

Add More Rows

Undo Last Add

IEMA Nos.	892744
	903199

B. PROPOSED BUDGET SUMMARY AND BUDGET TOTAL

1.	Investigation Costs. \$	14,085.47	
2.	Analysis Costs: \$	41,765.90	
3.	Personnel Costs: \$	151,151.59	
4.	Equipment Costs: \$	15,630.00	
5.	Field Purchases and Other Costs: \$	228,367.12	
6.	Handling Charges: \$	10,394.10	

TOTAL PROPOSED BUDGET =\$461,994.20

1.] 1.] 1.] 6 7 7 7 7 7 7 7 7 7 7 7 7 7	made as to why opathways). borings to borings to	This incl ings whic with disp each borin 4 16 22 16 25 16	Method II udes the costs h are to be co posal of cuttin	mpleted as n gs should no	nonitoring well of be included h , classification, feet to be bou feet to be bou	s should nere. An monitori red for red for	be listed here. indication must be ing wells, migration SB-38 for f _{oc} SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation remediation
1.] 1.] 4 2 9 Total Feet to be F	Method I Drilling Costs - equipment. Bor Costs associated made as to why o pathways). borings to	This incl ings whic with disp each borin 4 16 22 16 25 16	Method II udes the costs h are to be co- oosal of cuttin ng is being con feet = feet =	mpleted as n gs should no nducted (i.e. 4 16 22 64 50 144 0 0 0 0	labor, drill rig i nonitoring well of be included h , classification, feet to be boi feet to be boi	s should nere. An monitori red for red for	d other drilling be listed here. indication must be ing wells, migration <u>SB-38 for f_{oc}</u> <u>SB-39 for in-situ</u> <u>SB-40 for in-situ</u> <u>RW-7 through R</u> <u>SB-67/MW-33 au</u>	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
1.] 1.] 4 2 9 Total Feet to be F	Method I Drilling Costs - equipment. Bor Costs associated made as to why o pathways). borings to	This incl ings whic with disp each borin 4 16 22 16 25 16	Method II udes the costs h are to be co- oosal of cuttin ng is being con feet = feet =	mpleted as n gs should no nducted (i.e. 4 16 22 64 50 144 0 0 0 0	labor, drill rig i nonitoring well of be included h , classification, feet to be boi feet to be boi	s should nere. An monitori red for red for	d other drilling be listed here. indication must be ing wells, migration <u>SB-38 for f_{oc}</u> <u>SB-39 for in-situ</u> <u>SB-40 for in-situ</u> <u>RW-7 through R</u> <u>SB-67/MW-33 au</u>	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
1. 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Drilling Costs - equipment. Bor Costs associated made as to why o pathways). borings to borings to	ings whic with disp each borin 4 16 22 16 25 16	udes the costs h are to be co- posal of cuttin ng is being co- feet = feet =	mpleted as n gs should no nducted (i.e. 4 16 22 64 50 144 0 0 0 0	labor, drill rig i nonitoring well of be included h , classification, feet to be boi feet to be boi	s should nere. An monitori red for red for	d other drilling be listed here. indication must be ing wells, migration <u>SB-38 for f_{oc}</u> <u>SB-39 for in-situ</u> <u>SB-40 for in-situ</u> <u>RW-7 through R</u> <u>SB-67/MW-33 au</u>	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
1 1 1 4 2 9 Total Feet to be E	equipment. Bor Costs associated made as to why o pathways). borings to borings to	ings whic with disp each borin 4 16 22 16 25 16	h are to be consolid of cutting ng is being con- feet = feet =	mpleted as n gs should no nducted (i.e. 4 16 22 64 50 144 0 0 0 0	nonitoring well of be included h , classification, feet to be bou feet to be bou	s should nere. An monitori red for red for	be listed here. indication must be ing wells, migration SB-38 for f _{oc} SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
1 1 1 4 2 9 Total Feet to be E	equipment. Bor Costs associated made as to why o pathways). borings to borings to	ings whic with disp each borin 4 16 22 16 25 16	h are to be consolid of cutting ng is being con- feet = feet =	mpleted as n gs should no nducted (i.e. 4 16 22 64 50 144 0 0 0 0	nonitoring well of be included h , classification, feet to be bou feet to be bou	s should nere. An monitori red for red for	be listed here. indication must be ing wells, migration SB-38 for f _{oc} SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
1 1 1 4 2 9 Total Feet to be E	Costs associated made as to why operative pathways). borings to borings to	with disp each borin 4 16 22 16 25 16	feet = feet =	gs should no nducted (i.e. 4 16 22 64 50 144 0 0 0 0	feet to be bo feet to be bo	red for red for	SB-38 for f _{oc} SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
Total Feet to be E	made as to why opathways). borings to borings to	4 16 22 16 25 16	feet = feet =	4 16 22 64 50 144 0 0 0	feet to be bo feet to be bo	monitori red for red for red for red for red for red for red for red for	SB-38 for f _{oc} SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation remediation evaluation W-10 nd SB-68/MW-34
1 1 4 2 9 	borings to borings to	16 22 16 25 16		$ \begin{array}{r} 16 \\ 22 \\ 64 \\ 50 \\ 144 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	feet to be boy feet to be boy	red for red for red for red for red for red for red for	SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation W-10 nd SB-68/MW-34
1 4 2 9 	borings to borings to	16 22 16 25 16		$ \begin{array}{r} 16 \\ 22 \\ 64 \\ 50 \\ 144 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	feet to be boy feet to be boy	red for red for red for red for red for red for red for	SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation W-10 nd SB-68/MW-34
1 4 2 9 	borings to borings to	16 22 16 25 16		$ \begin{array}{r} 16 \\ 22 \\ 64 \\ 50 \\ 144 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	feet to be boy feet to be boy	red for red for red for red for red for red for red for	SB-39 for in-situ SB-40 for in-situ RW-7 through R SB-67/MW-33 au	remediation evaluation W-10 nd SB-68/MW-34
1 4 2 9 	borings to borings to	22 16 25 16	feet = feet = feet = feet = feet = feet = feet =	22 64 50 144 0 0 0	feet to be boy feet to be boy	red for red for red for red for red for red for	SB-40 for in-situ RW-7 through R SB-67/MW-33 at	remediation evaluation W-10 nd SB-68/MW-34
4 2 9 	borings to borings to borings to borings to borings to borings to borings to borings to	25 16	feet = feet = feet = feet = feet =	50 144 0 0 0	feet to be boy feet to be boy	red for red for red for red for	SB-67/MW-33 a	nd SB-68/MW-34
9 Total Feet to be E	borings to borings to borings to borings to borings to Tot	16	feet = feet = feet = feet =	144 0 0 0	feet to be bon feet to be bon feet to be bon feet to be bon feet to be bon	red for red for red for		
Total Feet to be E	borings to borings to borings to borings to Tot	· · · · · · · · · · · · · · · · · · ·	feet = feet = feet =	0 0 0	feet to be bou feet to be bou feet to be bou	red for red for	Soil resampling a	fter system shut down
	borings to borings to borings to Tot		feet = feet =	0	feet to be boi feet to be boi	red for		
	borings to borings to Tot	· · · · · · · · · · · · · · · · · · ·	feet =	0	feet to be bo			
	borings to							
	Tot		$_$ reet $=$		fact to be har			
				0	feet to be bor	eu Ioi		
		al Feet to	be Bored via	Hand Auger	r: 4			
-	Bored via Push f							
	Total Feet to be							
	e Bored via Push							
Т	Fotal Feet to be I	Bored via	Push for Soil	Resampling	g: <u>144</u>	l		
Duch True	unto for In city	1	avanta v C	1 208 60	por quant =\$		1,308.60	
	ents for In-situ on Evaluation:	1	_events x \$ _	1,308.60	per event =\$		1,508.00	-
HSA Events for		1	events x \$	1,635.75	per event =\$		1,635.75	
	Wells:	1		1,055.15				-
Push I	Events for the	1	events x \$	1,308.60	per event =\$		1,308.60	
Groundwater Eval	luation Wells:							-
Total Feet to be Be	ored via Push	144	_feet x \$ _	19.63	_ per foot =\$		2,826.72	-
for Soil	l Resampling:							
	havings thro	uch		ftofbe	edrock =	0	Et bedro	ock to be bored
	borings thro borings thro				edrock =	0		ock to be bored
	bornigs theo	ugn		11 01 00				
			Total Feet B	edrock to be	e Bored:		0	
Borings:	Ft	bedrock	x <u>\$</u>		_ per foot bedr	ock = \$	0.00	(or)
H	Hours x \$		per Hour	= \$	0.00)		
							_	
	# of Mobilizatio	ons @ \$		per mobiliz	zation = \$	0.00	-	
[···					Number			
Ot	ther Costs				1	Unit Cos	Total Cost	

2. **Professional Services (e.g., P.E., geologist)** - These cost must be listed in Section G, the Personnel section of the forms.

3. Monitoring Well Installation Materials - Costs listed here must be costs associated with well casing, well screens, filter pack, annular seal, surface seal, well covers, etc. List the items below in a time and materials format.

Materials	Number of Units	Unit Cost	Total Cost
RW-7 through RW-10 4-inch well installation via HSA	64	27.26	1,744.64
MW-33 and MW-34 2-inch well installation via HSA	50	17.99	899.50
· · · · · · · · · · · · · · · · · · ·			

4. Disposal Costs - This includes the costs for disposing of boring cuttings and any water generated while performing borings of installing wells.

Disposal of Cuttings:	17	drums x	\$	272.62	per drum	=	\$	4,634.54
Disposal of Water:	2	drums x	\$_	163.57	per drum		\$	327.14
Transportation Costs:\$								
Describe how the water/soil will be disposed: groundwater will be treated at a treatment facility				The soil will land then dispo		of at a	landf	ill. The

TOTAL INVESTIGATION COSTS = \$ 14,685.49

F. ANALYSIS COSTS

1. Physical Soil Analysis - This must only include <u>analysis</u> costs for classification of soil types at the site.

Moisture Content sample(s) x \$	per sample	=	\$	0.00
Dry Bulk Density sample(s) x \$ Indicate method to be performed:	per sample	=	\$	0.00
Soil Porosity sample(s) x \$	per sample		\$	0.00
Soil Classification sample(s) x \$ Indicate method to be performed:	per sample	<u></u>	\$	0.00
Grain Size sample(s) x \$ Indicate method to be performed:	per sample	=	\$	0.00
	per sample ASTM D2974	=	\$	82.88
sample(s) x \$ sample(s) x \$	per sample per sample per sample per sample per sample		\$ \$ \$ \$	0.00 0.00 0.00 0.00 0.00
2. Soil Analysis Costs - This must be for laboratory <i>analysis</i> only.				
14 BTEX and MTBE sample(s) x \$92.69	per sample	=	\$	1,297.66
TPH sample(s) x \$133.04	per sample		\$	266.08
2 RCRA Metals sample(s) x \$ 102.51	per sample	=	\$	205.02
2 RCRA Metals sample(s) prep x \$ 17.45	per sample	-	\$	34.90
2 COD sample(s) x \$15.27	per sample		\$	30.54
Flashpoint sample(s)	per sample	=	\$	0.00
pH sample(s) x \$	per sample	-	\$	0.00

903199 0.00 \$ per sample TCLP Lead sample(s) x\$ ____ 0.00 per sample \$ TCLP Lead sample(s) prep x \$ 0.00 \$ per sample = Paint filter sample(s) \$ х 0.00 per sample = \$ \$ sample(s) х per sample = \$ 0.00 sample(s) \$ x \$ 0.00 per sample = \$ sample(s) х \$ 0.00 per sample = \$ sample(s) х \$ 0.00 per sample = \$ sample(s) x 3. Groundwater Analysis Costs - This must be for laboratory <u>analysis</u> only. 39,041.86 BTEX and MTBE sample(s) x \$ 88.33 per sample === \$ 442 266.08 133.04 per sample \$ TPH sample(s) \$ 2 65.42 per sample \$ 32.71 = 2 COD sample(s) x \$ 259.54 129.77 per sample \$ RCRA Metals sample(s) x \$ -2 per sample \$ 24.00 RCRA Metals sample(s) prep x \$ 12.00 -2 0.00 \$ per sample Flash Point sample(s) x \$ _ \$ 95.96 per sample ____ 47.98 Nitrogen (total) sample(s) x\$ 2 per sample \$ 95.96 47.98 = Phosphorus (total) sample(s) x \$ 2 \$ 0.00 per sample \$ = Chloride sample(s) х \$ 0.00 per sample = Alkalinity sample(s) х \$ 0.00 \$ \$ per sample ----sample(s) х \$ 0.00 per sample = sample(s) \$ х

TOTAL ANALYSIS COSTS = \$

41,765.90

IEMA Nos. 892744

F-2

IEMA Nos. 892744 903199 PERSONNEL All personnel costs that are not included elsewhere in the budget/billing form must be listed here. Costs must be listed per task, not personnel type. The following are some examples of CAP (i.e. site tasks: Drafting, data collection, plan, report, or budget preparation for classification work plan, 45 day report, or high priority corrective action budget), sampling, drilling and well installation (i.e. drilling/well installation, corrective action or early field over-site for action), of maintenance of DPE system . The above list is not inclusive of all possible tasks. hours x $\$ 68.62 per hour = $\$ 205.86 Senior Technician 3 (Title) SVE blower O&M Task to be performed for the above hours: hours x \$ 95.96 per hour = \$3,238.65 33.75 Geologist III (Title) Project coordination; groundwater sampling; vapor migration Task to be performed for the above hours: field activities; sanitary sewer line excavation and backfilling oversight; vapor barrier and RW-2 installation 2,844.68 30.75 hours x \$ 92.51 per hour = \$Project Manager (Title) Project management and coordination; remediation evaluation; Task to be performed for the above hours: 5,193.31 95.29 54.50 hours x \$ per hour = \$ Project Manager (Title) Project management and coordination; IEPA air permit # Task to be performed for the above hours: 91060030 cancellation; Amended CAP and Budget preparation hours x 98.14 per hour = \$ 8,955.28 91.25 Project Manager (Title) Project management and coordination; soil boring installation Task to be performed for the above hours: oversight; soil sampling; boring log prep; remediation evaluation; Amended CAP and Budget preparation; O&M hours x 102.79 per hour = \$ 462.56 4.50 Senior Project Manager (Title) Project and reimbursement management Task to be performed for the above hours: hours x 105.87 per hour = \$ 397.01 Senior Project Manager 3.75 (Title) Project and reimbursement management Task to be performed for the above hours: 7,442.66 109.05 per hour = 68.25 hours x \$ Senior Project Manager (Title) Project and reimbursement management; project coordination; Task to be performed for the above hours: remediation evaluation; off-site access preparation; groundwater sampling; vapor barrier coordination and installation oversight; basement inspections as a result of vapor migration; correspondence with residents as a result

G.

of vapor migration

			IEMA Nos.	892744
				903199
Senior Professional Engineer	:	10.75	hours x 137.64 per hour = \$	1,479.63
(Title)				
			D I' discussion Amended CAD and	Dudget review
Task to be performed for the above hours:			Remediation evaluation; Amended CAP and and certification	Budget Teview
Project Manager	:	40	hours x $\$$ 98.14 per hour = $\$$	3,925.60
(Title)				
Task to be performed for the above hours:			Preparation of Amended CAP and Budget	
Series Droftmoreon/CAD		14	hours x \qquad 65.43 per hour = \qquad	916.02
Senior Draftperson/CAD (Title)	•			
(1110)				
Task to be performed for the above hours:			Preparation of figures	
			1 0.05 ····· •	1 100 50
Senior Professional Geologist	: .	10	hours x $ 119.95 $ per hour = \$	1,199.50
(Title)				
Task to be performed for the above hours:			Design of DPE system	
Senior Professional Engineer	: .	18	hours x $ = 141.76per hour = $	2,551.68
(Title)				
Task to be performed for the above hours:			Design of DPE system; review and certificat	ion of
Task to be performed for the above hours.			Amended CAP and Budget	
Sr. Administrative Assistant	: _	6	hours x $ = 49.07 $ per hour = \$	294.42
(Title)				
Task to be performed for the above hours:			Preparation, copying, and shipping of Amend	led CAP and
Task to be performed for the above hours.			Budget	
			X	
Project Manager	: _	22	hours x $\$$ 98.14 per hour = $\$$	2,159.08
(Title)				
Task to be performed for the above hours:			Oversight of the RW and MW installation; so	il sampling
Task to be performed for the above nours.				
Senior Project Manager	:	10	hours x $ 109.05 $ per hour = \$	1,090.50
(Title)				
			C II (CDDE sustant installation	
Task to be performed for the above hours:			Coordination of DPE system installation	
Senior Technician		142	hours x \$ 70.88 per hour = \$	10,064.96
(Title)	-		A	
Task to be performed for the above hours:			Coordination of DPE system installation; assi	
			trenching, excavation, backfilling, resurfacing system installation; system startup	
			system mountation, system startup	
Project Manager	:	112	hours x $\$$ 98.14 per hour = $\$$	10,991.68
(Title)				
				accusting.
Task to be performed for the above hours:			Oversight of system installation, trenching, ex backfilling, and soil transportation and dispos	cavaung,
			backtinning, and son transportation and dispos	
Senior Professional Engineer	:	12	hours x $ 141.76 $ per hour =	1,701.12
(Title)				
Task to be performed for the above hours:			System start up	
Soniar Tachnigian		556	hours x \$ 70.88 per hour = \$	39,409.28
Senior Technician	•	550	10410 A 4 .0.00 per nour 4	

IEMA Nos. 892744 903199 (Title) Operation and maintenance; system component repairs Task to be performed for the above hours: and cleaning 15,113.56 98.14 per hour = \$ 154 hours x \$ Project Manager (Title) Groundwater sampling coordination; baseline and quarterly Task to be performed for the above hours: groundwater sampling; surveying; 9,356.16 Senior Technician 132 (Title) Baseline and quarterly groundwater sampling; surveying Task to be performed for the above hours: hours x \$ 98.14 per hour = \$1,766.52 18 Project Manager (Title) Soil boring installation after the shut down of the DPE Task to be performed for the above hours: system; soil sampling hours x \$ 98.14 per hour = \$1,373.96 14 Geologist III (Title) Soil boring installation after the shut down of the DPE Task to be performed for the above hours: system; soil sampling 4,710.72 hours x \$ 98.14 per hour = \$48 Project Manager (Title) Preparation of monthly compliance reports Task to be performed for the above hours: 1,701.12 hours x \$ 141.76 per hour = \$ 12 Senior Professional Engineer (Title) Review of monthly compliance reports Task to be performed for the above hours: 3,925.60 hours x \$ 98.14 per hour = \$40 Project Manager (Title) Preparation of semi-annual Remediation Status Reports Task to be performed for the above hours: hours x \$ 141.76 per hour = \$ 1,134.08 Senior Professional Engineer 8 (Title) Review of semi-annual Remediation Status Reports Task to be performed for the above hours: hours x $_59.98$ per hour = 5,278.24 Senior Accounting Technician 88 (Title) Preparation of quarterly reimbursement packages Task to be performed for the above hours: 2,268.16 hours x 141.76 per hour = \$ Senior Professional Engineer 16 (Title) Review of quarterly reimbursement packages Task to be performed for the above hours: 151,151.59 TOTAL PERSONNEL COSTS = \$

H. EQUIPMENT COSTS

not be added here; use section J.		r		1
Equipment	Own or Rent?	Time Used	Unit Rate	Total Cost/Item
Truck	Own	87	95.00	8,265.00
PID	Own	65	75.00	4,875.00
Oil/Water Interface Probe	Own	64	35.00	2,240.00
Measuring Wheel	Own	14	5.00	70.00
Survey Equipment	Own	1	75.00	75.00
Digital Camera	Own	10	5.00	50.00
Metal Detector	Own	1	25.00	25.00
LEL Meter	Own	1	30.00	30.00

All Equipment used must be listed in a time and materials format. Handling charges should not be added here; use section J.

Total (Page H-1) : \$15,630.00

I. FIELD PURCHASES AND OTHER COSTS

Field Purchases	Quantity	Price/Item	Total Cost	Do Handling Charges Apply?
Ice	35	\$2.00	\$70.00	No
Terracore Samplers	14	\$10.90	\$152.60	Yes
Distilled Water	65	\$2.00	\$130.00	No
Nitrile Gloves	1,880	\$0.50	\$940.00	No
Baggies	278	\$0.25	\$69.50	No
Disposable HDPE Bailers	442	\$10.00	\$4,420.00	No
Rope	8,840	\$0.25	\$2,210.00	No
Disposable VOC Samplers	442	\$2.00	\$884.00	No
Nonhazardous Waste Labels	19	\$2.00	\$38.00	No
Effluent Air Sample Analysis	8	\$75.00	\$600.00	Yes
Soil Sample Overnight Shipping - RWs and SBs	4	\$54.52	\$218.08	Yes
Gws Overnight Shipping - Base., Qtrly., and Compliance	28	\$54.52	\$1,526.56	Yes
Amended CAP Shipping	1	\$15.00	\$15.00	Yes
Monthly Compliance Report Shipping	24	\$5.00	\$120.00	Yes
Semi-Annual Rem. Effectiveness Report Shipping	4	\$15.00	\$60.00	Yes
Quarterly Reimbursement Package Shipping	8	\$15.00	\$120.00	Yes
Vacuum Pump Bearing Grease	1	\$20.00	\$20.00	Yes
Barricades	10	\$50.00	\$500.00	Yes
Private Utility Locator	1	\$200.00	\$200.00	Yes
Visqueen- Stock Piling During Trenching on 3/13/09	40	\$1.50	\$60.00	No
Village of Wauconda Permit Fee - Trenching on 3/13/09	1	\$1,000.00	\$1,000.00	Yes
R.W. Collins - Trenching on 3/13/09	1	\$1,575.00	\$1,575.00	Yes
Barricades - Trenching on 3/13/09	1	\$120.00	\$120.00	Yes
Bentonite - Trenching and RW-2 Install on 3/13/09	15	\$12.00	\$180.00	Yes
Private Utility Locator - Trenching on 3/13/09	1	\$200.00	\$200.00	Yes
RW-2 Parts - RW-2 Installation on 3/13//09	1	\$30.00	\$30.00	Yes
		-		

All field purchases must be listed in a time and materials format. Handling charges must not be added here; use section J, Handling Charges to calculate the handling charges.

Subtotal Page I-1 :--

\$15,458.74

\$21,570.00

Other costs - A listing and description of all other costs which will be/were incurred and are not specifically listed on this form should be attached. The listing should include a cost breakdown in a time and materials format.

1.					tion System Costs			
	A.		PE Syst	em Rental months	@	\$3,595.00	per month	=
	B.	De	elivery o	of DPE System		=	\$1,425.00	
	C.	Pi	ckup of	DPE System		=	\$1,425.00	
				Total DP	E System Rental Costs		\$24,420.00	
2.	Per				ion System Costs			
	А.	DF	PE Inlet	Manifold		=	\$7,612.00	
	В.	Ai	r/Water	Moisture Separat	or	=	\$4,009.00	_
	C.	Ro	tary Cla	ay Vacuum Pump		=	\$14,612.00	_
	D.	Va	por Pha	ise Carbon			\$7,150.00	_
	E.	Oil	/Water	Separator		-	\$8,620.00	-
	F.	Air	Strippe	er		=	\$7,117.00	_
	G.	Sys	stem Co	ntrol Panel		=	\$7,724.00	-
	H.	En	closed T	Trailer		=	\$22,156.00	-
	I.	Lat	oor to A	ssemble the Syste	m at Manufacturer	=	\$17,500.00	-
	J.	Shi	pping			=	\$2,500.00	-
	Tota	ıl Pe	rmaner	it Dual Phase Ex	traction System Costs	=	\$99,000.00	-
3.	<u>Pert</u> A.		<u>Costs</u> A Air F	Pollution Control F	Permit			
		1.	2009-	2010 Initial and A	Innual Fee	=	\$1,500.00	
		2.	2010-	2011 Annual Fee			\$200.00	
		3.	2011-	2012 Annual Fee		= _	\$200.00	
	B.	Vill	age of V	Vauconda Buildin	g Permit Fee	=	\$1,000.00	
	C.	Vill	age of V	Vauconda Water I	Discharge Permit			
		1.	2009-:	2010 Initial and A	nnual Fee	= _	\$1,500.00	
		2.	2010-2	2011 Annual Fee		=	\$500.00	
		3.	2011-2	2012 Annual Fee		= _	\$500.00	
					Total Permits Costs	= _	\$5,400.00	

4. Trenching Costs for System Installation

A. Trenching, backfilling, and resurfacing

		<u>Per</u> 1.	<u>rsonnel</u> Foreman						
		1.	1010	days	@	\$825.00	per day	=	\$8,250.00
		2.	Senior Technician 10	days	@	\$760.00	per day		\$7,600.00
		<u>Eq</u> 1.	uipment Backhoe and Bobc 10	at with Operator days	@	\$1,400.00	_ per day	=	\$14,000.00
		2.	Backhoe and Bobc	at Mobilization mobilization	@	\$800.00	_ per mobilizatio	n =	\$800.00
		3.	Plate Compactor 10	days	@	\$75.00	day	-	\$750.00
		4.	Asphalt Cutter 1	day	@	\$700.00	day	=	\$700.00
		<u>Mat</u> 1.	terials Piping 980	feet	@	\$10.00	per foot		\$9,800.00
		2.	18" x 18" Manhole: 10	s manholes	@	\$300.00	per manhole	=	\$3,000.00
		3.	3' x 3' Concrete Col 90	llars Around Manholes feet ³	@	\$8.64	per foot ³	=	\$777.60
		4.	Backfill 188	yards ³	@	\$21.81	per yard ³	=	\$4,100.28
		5.	3" Asphalt 330	feet ²	@	\$3.85	per foot ²	=	\$1,270.50
	B.	Soil	Transportation 191	yards ³	@	\$20.00	per yard ³	_	\$3,820.00
	C.	Soil	Disposal 191	yards ³	@	\$20.00	per yard ³	-	\$3,820.00
					Total Trenchin	g Costs for Syst	em Installation	=	\$58,688.38
5.	<u>Syst</u> A.		perational Costs tric Power Drop drop	<i>@</i>	\$5,000.00	per drop	=	\$5,000.00	
	A.		tric Power	@	\$800.00	per month	=	\$19,200.00	
	B.		e Service months	@	\$50.00	per month	=	\$1,200.00	
					otal System Ope	rational Costs	= -	\$25,400.00	
			- -	FOTAL OTHER COS	TS = \$	_	2	212,908.38	

Subtotal Page 1-1 :	15,458.74
Subiotal Page 1-1 .	
Total Pages I-1 and I-2 :	228,367.12
Total Pages 1-1 and 1-2.	·

J. HANDLING CHARGES

Handling charges are eligible for payment on subcontractor billings and/or field purchases only if they are equal to or less than the amounts determined by the following table:

Subcontractor or Field	Eligible Handling Charges as a
Purchase Cost	Percentage of Cost
\$1 - \$5,000	12%
\$5,001 - \$15,000	\$600 + 10% of amt. Over \$5,000
\$15,001 - \$50,000	\$1,600 + 8% of amt. Over \$15,000
\$50,001 - \$100,000	\$4,400 + 5% of amt. Over \$50,000
\$100,001 - \$1,000,000	\$6,900 + 2% of amt. Over \$100,000

A. Subcontractor Charges

Subcontractor	Section in these Forms where Cost is Listed	Subcontract Amount
Drilling and Recovery Well Installation	Е	\$7,515.71
Soil and Water Disposal	Е	\$4,961.68
Soil, Water, and Air Laboratory Analysis and Shipping	F and I	\$44,263.14
Senior Draftperson/CAD	G	\$916.02
Private Utility Locator	I	\$200.00
Temporary DPE System Rental	Ι	\$24,420.00
Trenching for System Installation	I	\$58,688.38
System Operational Costs	1	\$25,400.00
R.W. Collins - Trenching on 3/13/09	I	\$1,575.00
Private Utility Locator - Trenching on 3/13/09	Ι	\$200.00
·		

Subtotal Page J-1 : \$168,139.93

B. Field Purchase

Field Purchase	Field Purchase Amount	
Report and Reimbursement Package Shipping	\$315.00	
Vacuum Pump Bearing Grease	\$20.00	
Barricades	\$500.00	
Permanent DPE System	\$99,000.00	
IEPA Air Pollution Control Permit	\$1,900.00	
Village of Wauconda Building and Water Discharge Permits	\$3,500.00	
Village of Wauconda Permit Fee - Trenching on 3/13/09	\$1,000.00	
Barricades - Trenching on 3/13/09	\$120.00	
Bentonite - Trenching and RW-2 Install on 3/13/09	\$180.00	
RW-2 Parts - RW-2 Installation on 3/13//09	\$30.00	

Subtotal Page J-2 : _	\$ 106,565.00
Total Pages J-1 and J-2 : _	\$ 274,704.93
Handling Charge*_	\$ 10,394.10

•

*Use chart at top of Page J-1 to calculate the allowable handling charge.

Copies of invoices for subcontractor costs and receipts for field purchases are required for billing submissions.
K. LOW PRIORITY CORRECTIVE ACTION

В.

С.

Corrective Action at Low Priority Sites consists of groundwater monitoring for three years.

A. Preparation of the Corrective Action Plan. Attach the appropriate sections of the budget/billing forms to support the summary of costs.

1	Investigation Costs	s: \$	
2	Analysis Costs:	\$	an a
3	Personnel Costs:	\$	
4	Equipment Costs:	\$	
5	Field Purchases and	l Oth	er Costs: \$
6	Handling Charges:	\$	
summary		low.	Costs (Quarterly Monitoring) - Provide a Attach the appropriate section of the budget of costs.
1	Analysis Costs:	\$	
2	Personnel Costs:	\$	
3	Equipment Costs:	\$.	
4	Field Purchases and		er Costs: \$
5	Handling Charges:	\$	
summary o		ical (low.	Costs (Semi-Annual Monitoring) - Provide a Attach the appropriate section of the budget
1	Analysis Costs:	\$_	
2	Personnel Costs:	\$_	
3	Equipment Costs:	\$_	
4	Field Purchases and	Other	Costs: \$
5	Handling Charges:	\$	

D. 3rd Year Sampling and Analytical Costs (Annual Monitoring) - Provide a summary of the 3rd year costs below. Attach the appropriate section of the budget /billing forms to support the summary of costs.

1	Analysis Costs:	\$	
2	Personnel Costs:	\$	
3	Equipment Costs:	\$	
4	Field Purchases and (Other Costs: \$	
5	Handling Charges:	\$	
TOTAL LOW PRIOR	ITY CORRECTIVE	ACTION COSTS: \$ 0.00)

.

L. HIGH PRIORITY CORRECTIVE ACTION

Corrective Action at High Priority Sites may involve both soil and groundwater remediation. Below provide a summary of costs for the remediation type(s) chosen and attach the appropriate sections of the budget/billing forms to support the summary of costs.

A. Preparation of the Corrective Action Plan

1.	Investigation Costs: \$	2,944.34
2.	Analysis Costs: \$	3,354.38
3.	Personnel Costs: \$	8,887.22
4.	Equipment Costs: \$	470.00
5.	Field Purchases and Other Costs: \$	3,646.77
6.	Handling Charges: \$	822.97

B. Groundwater Remediation

1.	Analysis Costs:	\$
2.	Personnel Costs:	\$
3.	Equipment Costs:	\$
4.	Field Purchases and	Other Costs: \$
5.	Handling Charges:	\$

Of the above costs, please provide a break down of the costs associated with operation and maintenance (O&M), if applicable, as requested below: Months of O&M x \qquad per month = \qquad

Months of O&M x \$

C. Excavation and Disposal

1.	Analysis Costs:	\$		
2.	Personnel Costs:	\$		
3.	Equipment Costs:	\$		
4.	Field Purchases and	Other	Costs: \$	
5.	Handling Charges:	\$		

Of the above costs, please provide a break down of the costs associated with excavation, transportation, and disposal as requested below:

Excavation:	_yard ³ x \$	per yard ³		\$		
Transportation:	yard ³ x \$		per ya	ard ³	-	\$
Disposal:	yard ³ x \$	per yard ³	=	\$		

IEMA Nos. 892744 903199

1. Investigation Costs: \$ 11,741.15 Analysis Costs: \$ 38,411.52 2. 3. Personnel Costs: \$ 142,264.37 15,160.00 4. Equipment Costs: \$ 5. Field Purchases and Other Costs: \$ 224,720.35 6. Handling Charges: 9,571.12 \$

DPE System

Of the above costs, please provide a break down of the following costs as requested below if applicable:

Excavation		yard ³ x \$		per yard ³		\$			
Transportat	ion:		yard ³ x \$		per y	ard ³	-	\$	
Treatment:		yard ³ x \$		per yard ³	=	\$_			
Operation a	nd Maintenan	ce (O&M):							
24	Months of O	&M x \$	3,443.35	per month	-	\$	82,640).44	
E.	Backfill Cos	ts							
	2. 3. 4. Of the above	Handling Ch costs, please	ses and Other arges: \$ _	· Costs: \$			·		ested
	below if appl	icable:							

Type of Backfill:

D.

Alternate Technology, Type

_____ yard³ x $\ ____$ per yard³ = $\ ____$

M. JUSTIFICATION FOR BUDGET AMENDMENTS

If this form is being submitted for an amendment, you must submit a narrative justifying the need for the amendment. If the amendment includes a revision in a corrective action proposal, a new proposal must be submitted.

This budget amendment includes costs for the following.
1. Remediation evaluation.
2. Performing one soil boring to collect soil samples for f_{oc} analysis.
3. Obtaining off-site access and performing two soil borings to further evaluate chemical
oxidation as a remediation method.
4. Groundwater sampling two monitoring wells to further evaluate chemical oxidation as a
remedial method.
5. Obtaining off-site access and installing MW-33 and MW-34 to evaluate the groundwater
concentrations at two locations in Osage Park.
6. Installation of RW-7 through RW-10.
7. DPE system installation.
8. O&M.
9. Groundwater sampling activities.
10. Soil boring installation after the shut down of the DPE system.
11. Preparation of remediation permits, compliance reports, and status reports.
12. Preparation of this Amended CAP and Budget.
13. Preparation of reimbursement packages.
14. Vapor migration activities.

APPENDIX E

OWNER/OPERATOR AND LICENSED PROFESSIONAL ENGINEER/GEOLOGIST BUDGET CERTIFICATION FORM

Owner/Operator and Licensed Professional Engineer/Geologist Budget Certification Form

I hereby certify that I intend to seek payment from the UST Fund for costs incurred while performing corrective action activities for Leaking UST incident <u>892744</u>. I further certify that the costs set forth in this budget are for necessary activities and are reasonable and accurate to the best of my knowledge and belief. I also certify that the costs included in this budget are not for corrective action in excess of the minimum requirements of 415 ILCS 5/57, no costs are included in this budget that are not described in the corrective action plan, and no costs exceed Subpart H: Maximum Payment Amounts, Appendix D Sample Handling and Analysis amounts, and Appendix E Personnel Titles and Rates of 35 III. Adm. Code 732 or 734. I further certify that costs ineligible for payment from the Fund pursuant to 35 III. Adm. Code 732.606 or 734.630 are not included in the budget proposal or amendment. Such ineligible costs include but are not limited to:

Costs associated with ineligible tanks. Costs associated with site restoration (e.g., pump islands, canopies). Costs associated with utility replacement (e.g., sewers, electrical, telephone, etc.). Costs incurred prior to IEMA notification. Costs associated with planned tank pulls. Legal fees or costs. Costs incurred prior to July 28, 1989. Costs associated with installation of new USTs or the repair of existing USTs.

Owner/Operator: Shivam Energy, Inc.

Authorized Representative: Rajani Patel	Title: Owner
Signature: Rafan' Pali	Date: 03/29/09
Subscribed and sworn to before me the 29 day of	march 2009
Sandre L. Roderk	Seal: Notary Public, State of Illinois
(Notary Public)	MY COMMISSION EXPIRES 12-26-2011

In addition, I certify under penalty of law that all activities that are the subject of this plan, budget, or report were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan, budget, or report and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in the plan, budget, or report has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 III. Adm. Code 732 or 734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements of persentations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environmental Protection Act [415 ILCS 5/44 and 57.17].

L.P.E./L.P.G.: Shawn Rodeck	L.P.E.L.P.G. Seal:	SHAWN A. RODECK
L.P.E./L.P.G. Signature:	Date:	OESTINO 2009
Subscribed and sworn to before me the $(\bigcirc \ day \text{ of } day of$	June	2000
(Notary Public)	Seal: SANDR	FICIAL SEAL A L. RODECK BLIC, STATE OF ILLINOIS SION EXPIRES 12-26-2011

The Illinois EPA is authorized to require this information under 415 ILCS 5/1. Disclosure of this information is required. Failure to do so may result in the delay or denial of any budget or payment requested hereunder.

APPENDIX F

OFFICE OF THE STATE FIRE MARSHAL ELIGIBILITY AND DEDUCTIBLE DETERMINATION

Office of the Illinois State Fire Marshal

"Partnering With the Fire Service to Protect Illinois"

CERTIFIED MAIL - RECEIPT REQUESTED #7008 2810 0000 2103 5320

April 29, 2009

Shivam Energy, Inc. 399 W. Liberty Street Wauconda, IL 60084

In Re:

Facility No. 2-010129 IEMA Incident No. 89-2744 Liberty Clark 399 Liberty Street Wauconda, Lake Co., IL

Dear Applicant:

The Reimbursement Eligibility and Deductible Application received on April 24, 2009 for the above referenced occurrence has been reviewed. The following determinations have been made based upon this review.

It has been determined that you are eligible to seek payment of costs in excess of \$10,000. The costs must be in response to the occurrence referenced above and associated with the following tanks:

Eligible Tanks

Tank 16,000 gallon GasolineTank 26,000 gallon Gasoline

You must contact the Illinois Environmental Protection Agency to receive a packet of Agency billing forms for submitting your request for payment.

An owner or operator is eligible to access the Underground Storage Tank Fund if the eligibility requirements are satisfied:

- 1. Neither the owner nor the operator is the United States Government,
- 2. The tank does not contain fuel which is exempt from the Motor Fuel Tax Law,
- 3. The costs were incurred as a result of a confirmed release of any of the following substances:

"Fuel", as defined in Section 1.19 of the Motor Fuel Tax Law

Aviation fuel

Heating oil

Kerosene

Used oil, which has been refined from crude oil used in a motor vehicle, as defined in Section 1.3 of the Motor Fuel Tax Law.

- 4. The owner or operator registered the tank and paid all fees in accordance with the statutory and regulatory requirements of the Gasoline Storage Act.
- 5. The owner or operator notified the Illinois Emergency Management Agency of a confirmed release, the costs were incurred after the notification and the costs were a result of a release of a substance listed in this Section. Costs of corrective action or indemnification incurred before providing that notification shall not be eligible for payment.
- 6. The costs have not already been paid to the owner or operator under a private insurance policy, other written agreement, or court order.
- 7. The costs were associated with "corrective action".

This constitutes the final decision as it relates to your eligibility and deductibility. We reserve the right to change the deductible determination should additional information that would change the determination become available. An underground storage tank owner or operator may appeal the decision to the Illinois Pollution Control Board (Board), pursuant to Section 57.9 (c) (2). An owner or operator who seeks to appeal the decision shall file a petition for a hearing before the Board within 35 days of the date of mailing of the final decision, (35 Illinois Administrative Code 105.102(a) (2)).

For information regarding the filing of an appeal, please contact:

Dorothy Gunn, Clerk Illinois Pollution Control Board State of Illinois Center 100 West Randolph, Suite 11-500 Chicago, Illinois 60601 (312) 814-3620

The following tanks are also listed for this site:

Tank 310,000 gallon GasolineTank 410,000 gallon Gasoline

Your application indicates that there has not been a release from these tanks under this incident number. You may be eligible to seek payment of corrective action costs associated with these tanks if it is determined that there has been a release from one or more of these tanks. Once it is determined that there has been a release from one or more of these tanks. Once it is determined that there has been a release form one or more of these tanks.

If you have any questions, please contact our Office at (217) 785-1020 or (217) 785-5878.

Sincerely,

Deanne Lock Administrative Assistant Division of Petroleum and Chemical Safety

cc:

IEPA Facility File

APPENDIX G

IN-SITU CHEMICAL OXIDATION CALCULATIONS

Mass of Contaminants in the Saturated Soil Utilizing COD

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation

Total Mass of Contaminants = (Highest Average Concentration (ppm)/1,000,000) * Volume of Contaminated Mass (yd³) * (1 - Soil Porosity (%)) * Dry Bulk Density (lbs/ft³) * (27 ft³/ 1 yd³)

ft³

Conversions

 $1 yd^3 = 27$

Highest Average Concentration=3,400.00ppmThe average COD concentration in the soil was the higher of the average TPH and
COD concentrations in the soil samples that were collected from within the
contaminated soil plume. TPH and COD concentrations for the soil samples collected
are summarized in Table 1.

Volume of Contaminated Mass = 800.13 yd³ The volume was estimated by determining the area of the contaminated soil plume (5,400.91 ft²) and an average thickness of the soil contamination below the average field interpreted water table (4 ft). The contaminated plume is illustrated on Figure 5.

 $\frac{\text{Dry Bulk Density}}{\text{The dry bulk density is summarized in Table 1.}} = 108.6 \qquad \text{lbs/ft}^3$

Total Mass of Contaminants = 7,977 lbs

Mass of Contaminants in the Groundwater Utilizing COD

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation

Total Mass of Contaminants = (Highest Average Concentration (ppm)/1,000,000) * Volume of Contaminated Mass (yd³) * Soil Porosity (%) * Density of Water (lbs/ft³) * (27 ft³/ 1 yd³)

Conversions

$1 vd^3$	= 27 ft ³	
------------	----------------------	--

Highest Average Concentration=42.53ppmThe average COD concentration in the groundwater was the higher of the averageTPH and COD concentrations in the groundwater samples that were collected.TPH and COD concentrations for the groundwater samples collected are summarized inTable 3.

<u>Volume of Contaminated Mass</u> = 7,028.34 yd^3 The volume was estimated by determining the area of the contaminated groundwater plume (94,882.59 ft²) and utilizing the groundwater fluctuation (2 ft) from the most recent groundwater elevations in the wells within the proposed groundwater treatment area to determine a treatment thickness. The contaminated plume is illustrated on Figure 2.

Total Soil Porosity	=	34.4	%
The total soil porosity is summarized	in lable	1.	
Density of Water	. =	62.43	lbs/ft ³
Total Mass of Contaminants	-	173	lbs

Amount of Oxygen Required

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation

Amount of Oxygen Required (lbs) = Total Mass of Contaminants (lbs) * 3 lbs of Oxygen/1 lb of Contaminant

The IEPA assumes that 3 lbs of oxygen will treat 1 lb of contaminants

Total Mass of Contaminants = 8,150 lbs The Total Mass of Contaminants is the sum of the mass of the soil and groundwater contaminants which were calculated on the previous sheets.

Amount of Oxygen Required = 24,451 lbs

Amount of Product Required

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation

Amount of Product Required (lbs) = Amount of Oxygen Required (lbs)/Amount of Oxygen in Product (%) * 1.25

The IEPA allows a 20% to 30% safety factor in addition to the amount of product required; therefore the value of the Amount of Oxygen Required divided by the Amount of Oxygen in the Product should be multiplied by 1.25.

Amount of Oxygen Required = 24,451 lbs The Amount of Oxygen Required was calculated on the attached sheet.

Amount of Oxygen in the Product = 17.30 % This value was obtained from the information provided by the manufacturer. Information provided by the manufacturer is attached.

Amount of Product Required	Ξ	176,667	lbs
----------------------------	---	---------	-----

APPENDIX H

HYDRAULIC GRADIENT AND HYDRAULIC CONDUCTIVITY CALCULATIONS

HYDRAULIC GRADIENT CALCULATION

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084

Gauging Date: January 5, 2009

The value for the hydraulic gradient was solved using the groundwater elevation data from MW-26 (104.15 feet), MW-15 (99.85 feet), and MW-18 (96.85 feet), and the distance between MW-26 and MW-18 (466). These values were used to solve for the true hydraulic gradient in three dimensions (USGS 1983).

$\left[\frac{(h_1-h_2)}{x}\right] = \left[\frac{(h_1-h_3)}{d_1 \to d_3}\right]$	Equation #1
---	-------------

Where:

h ₁	=	highest head	MW-26	(104.15 feet)
h ₂	=	intermediate head	MVV-15	(99.85 feet)
h ₃	=	lowest head	MW-18	(96.85 feet)
$d_1 \rightarrow d_3$	=	distance from h_1 to h_3		466 feet
x	=	distance between h_1 and h_3 at which the		274.49 feet
		total head is equal to h_2 (value solved by		
		equation #1)		

Solving the above equation for x results in a value of 274.49 feet, which is the distance from h1 where the total head is equal to that at h2 [MW-15 (99.85 feet)]

Hydraulic gradient is then calculated as:

$$i = \left[\frac{(h_2 - h_3)}{x \to d_3}\right]$$

Equation #2

Where:

$$x \rightarrow d_3 =$$

distance from distance x to $h_3 = (d_1 \rightarrow d_3) - x$ hydraulic gradient (solved by equation #2)

Clark Service Station No.646 BB&J Project No. C01-7-0011

Logarithmic Average of Hydraulic Conductivity

MW-4:	1.08 x 10 ⁻³ cm	n/sec		2.13 x 10 ⁻³ f	t/min	
MW-6:	6.61 x 10 ⁻³ cm	n/sec	-	1.30 x 10 ⁻² f	t/min	
MW-14:	8.37 x 10 ⁻⁵ cm	n/sec	=	1.65 x 10⁴ f	t/min	
MW-16:	2.25 x 10 ⁻⁵ cm	/sec	=	4.42 x 10 ⁻⁵ f	t/min	
log _(average value)	=) ⁻³ ft/min) + log min) + log (4.4		10 ⁻² ft/min) + log ft/min)] / 4
log (average value)		-3.173				
Average Value	-	inv. Lo	g (-3.17	$(3) = 10^{-3.268}$	=	6.72 x 10 ⁻⁴ ft/min
log (average value)		[log (2.	13 x 10	- ³ ft/min) + log	g (1.30 x	10 ⁻² ft/min] / 4
log (average value)	=	-3.173				
Average Value (Service Station		inv. Log	g (-3.17	$(3) = 10^{-3.268}$	<u></u>	5.37 x 10 ⁻³ ft/min
\log (average value)		[log (1.6	55 x 10 ⁻	4 ft/min) + log	(4.42 x)	10 ⁻⁵ ft/min)] / 4
log (average value)	· .	-3.173				
Averag e Value (Osage Park)	=	inv. Log	(-3.173	$(3) = 10^{-3.268}$		8.60 x 10 ⁻⁵ ft/min

Average Linear Ground-Water Flow Velocity

Darcy's Law: $v = Q / \eta a = v/\eta = -K\Delta H / \eta \Delta L = Ki/\eta_{c}$

1 7 7	1.00		1
ΔH	= difference	th hyrdrouilio	heen
<u></u>		II IIYUIAUIIC I	luau

- ΔL = distance between well openings
- K = hydraulic conductivity
- η = effective porosity (assume 0.20)
- i = $(\Delta H / \Delta L)$; from 8/27/97 potentiometric surface figure (MW-4 and MW-16)

Clark Service Station No.646 BB&J Project No. C01-7-0011 Hydraulic Conductivity and Ground-Water Flow Velocity Calculations January 21, 1998

 $v = [6.72 \text{ x } 10^{-4} \text{ ft/min (average of all four wells)}] \text{ x (5 ft/280 ft)} / 0.2$

 $\overline{v} = 5.21 \text{ x } 10^{-5} \text{ ft/min} = 31.74 \text{ ft/year}$ (average for entire site)

 $v = [5.37 \text{ x } 10^{-3} \text{ ft/min} (\text{average of wells MW-4 and MW-6})] \text{ x } (5 \text{ ft/280 ft}) / 0.2$

 \overline{v} = 4.16 x 10⁻⁴ ft/min = 254.02 ft/year (adjusted average for flow in Service Station Area)

 $v = [8.60 \text{ x } 10^{-5} \text{ ft/min} \text{ (average of wells MW-14 and MW-16)}] \text{ x (5 ft/280 ft) / 0.2}$

 $\overline{v} = 6.69 \times 10^{-6}$ ft/min = 4.07 ft/year (adjusted average for Osage Park)

			;		
HYDRA	ULIC CI	ĴND	UCTIVI	ΓY [[OUWER AND RICE METHOD
Project No	: C01-7-00	11			Well No: MW-4
Project Name	: Clark Rei	ining	& Marketi	ng, Inc	
Location	: Station #0	546			Test Date: 9/24/97
					Test By: DPO
Analyzed By:	DPO			Dar	ta Checked By: Pco Analysis Checked By:
Analysis Date:			-	μa	Check Date: 11-13-67 Check Date:
Analysis Date.			-		
Variable	Eng. U	nit	S.I. U	1ít.	Description
Yo =	0.910	ft	27.7	ст	Drawdown at time "O"
Yt =	0.074	ft	2.3	. cm	Drawdown at time "t"
t =	4.00	min	240		Time
SWL =	8.35	ft	254.5	cm	Static water level before slug test
TD =	17.15	ft	522.7		Total depth of well
Le =	8.80	ft	268.2	cm	Length of screen (Le = Lw if SWL is within screen interval)
H =	21.65	ft	659.9		Saturated aquifer thickness
Rw =	0.34	ft	10.4	cm	Radial distance between undisturbed aquifer and well center
Rc =	0.08	ft	2.5	cm	Actual casing inside radius
n =	0.20		0.20		Porosity of sand pack ($n = "0"$ if SWL above screen interval)
Rc.t =	0.17	ft	5.2		Theoretical casing radius (if SWL is within screen interval)
Lw =	8.80	ft	268.2	1	Total depth of water in well
Le/Rw =	25.9		25.9		Function of dimensionless coefficients
A =	2.3		2.3	1	Dimensionless coefficient Dimensionless coefficient
B =	0.4		0.4	1	
Ç =	1.9		1.9	11	Dimensionless coefficient
lf Lw <h< td=""><td>Ln(Re/Rw</td><td>() =</td><td>2.090</td><td></td><td>K= 1.08E-03 cm/sec K= 2.13E-03 ft/min</td></h<>	Ln(Re/Rw	() =	2.090		K= 1.08E-03 cm/sec K= 2.13E-03 ft/min
	Ln(Re/Rw		2.438		K= 1.26E-03 cm/sec K= 2.49E-03 ft/min

, st

- 1477 ---

COMMENTS:

.:

HYDRAULIC CONDUCTIVITY CALCULATION

Clark Refining & Marketing, Inc. Station #545 PROJECT NUMBER C01-7-0011

MW-4

SLUG-OUT

BOUWER AND RICE METHOD

(1978, 1989)

			-
VARIAE	ILES		
H =	659.9	cm	Saturated Aquifer Thickness
Rc 🛥	2.5	сп	Radius of Well Casing
Rw =	10.4	cm	Radius of Well and Sand Pack
Le ≖	268.2	cm	Screen Length
Lw =	268.2	cm	Depth of Water to Bottom of Casing
Yo =	27.7	cm	Graph Variable
Yt≖	2.3	cm	Graph Variable
t ×	240	sec	Graph Variable
A =	2.3		Interpreted Constant
8 =	0.4		Interpreted Constant
HYDRAULIC CO	NDUCTIV	ITY =	1.08E-03 cm/sec

Assumption: Saturated aquifer thickness measurement for hydraulic conductivity calculation is estimated at 30 feet below ground surface. Data taken from soil boring MW-8.

۰.

÷

	o: C01-7-00			<u></u>	BOUWER AND RICE METHOD) Well No: MW-6	,
Project Nam	e: Clark Re	fining	& Marketi	ng, Inc		
	n: Station #	-		•	Test Date: 9/24/97	
					Test By: DPO	
Analyzed By	r: DPO			Da	a Checked By: Ro Analysis Ch	ecked By:
Analysis Date	: 9/24/97		-			eck Date:
Variable	Eng. U	riit	S.I. U	nit	Description	
Yo =	0.670	ft	20.4	cm	Drawdown at time "0"	
Yt =	0.022	Ĭt	0.7	cm	Drawdown at time "t"	
t =	1.00	min	60	sec	Time	
SWL =	7.52	ft	229.2	cm	Static water level before slug test	
TD =	14.68	ft	447.5	cm	Total depth of well	
Le =	7.16	ft	218.2	cm	Length of sceen (Le=Lw if SWL is within screen int	erval)
H =	22.48	ft	685.2	cm	Saturated aquifer thickness	
Rw =	0.34	ft	10.4	cm	Radial distance between undisturbed aquifer and we	ll center
Rc ≠	0.08	ft	2.5	cm /	Actual casing inside radius	
n `=	0.20		0.20	F	orosity of sand pack (n = "0" if SWL above scree	n interval)
Rc.t =	0.17	ft	5.2	cm 1	heoretical casing radius (if SWL is within screen int	erval)
Lw =	7.16	ft	218.2		otal depth of water in well	
Le/Rw =	21.1		21.1	F	unction of dimensionless coefficients	
A =	2.2		2.2	C	imensionless coefficient	
B =	0.3		0.3		imensionless coefficient	
C =	1.7		1.7	ם	mensionless coefficient	
Lw < H	Ln(Re/Rw	1	1,906		K= 6.61E-03 cm/sec K= 1.3	0E-02 ft/min
Lw=H	Ln(Re/Rw		2.267			5E-02 ft/min

•

. •

۰ ۱.

COMMENTS:

į

HYDRAULIC CONDUCTIVITY CALCULATION

;

Clark Rafining & Marketing, Inc. Station #648 PROJECT NUMBER C01-7-0011 MW-8 SLUG-OUT

BOUWER AND RICE METHOD (1975, 1989)

	•		
VARIA	BLES		
Н =	685.2	ст	Saturated Aquifer Thickness
Rc ≖	2.5	cm	Radius of Well Casing
Rw ≖	10.4	cm	Radius of Well and Sand Pack
Le =	218.2	cm	Screen Langth
Lw ≖	218.2	cm	Depth of Water to Bottom of Casing
Yo =	20.4	cm	Graph Variable
Yt≃r	0.7	ст	Graph Variable
t ===	60	sec	Graph Variable
A =	2.2		Interpreted Constant
8 =	0.3		Interpreted Constant

' HYDRAULIC CONDUCTIVITY = 6.61E-03 cm/sec

Assumption: Saturated aquifer thickness measurement for hydraulic conductivity calculation is estimated at 30 feet below ground surface. Data taken from soil boring MW-8.

	HYDRA	IULIC CO	DND	UCTIVI	TY (I	ROUWER AND RICE METHOD
	Project No	: C01-7-00	11			Well No: MW-14
	Project Name	: Clark Ref	ining a	& Marketii	ng, Inc	c. Slug-in/Slug-out: SLUG-OUT
	Location	: Station #6	546			Test Date: 9/24/97
						Test By: DPO
	Analyzed By	: DPO			Da	ta Checked By: Analysis Checked By:
	Analysis Date			-		Check Date: 11-13-97 Check Date:
				-		
	Variable	Eng. Li	nit	S.i. U	nít.	Description
	Yo =	1.500	ft	45.7	cm	Drawdown at time "0"
	Yt =	1.050	ft	32.0	ст	Drawdown at time "t"
	t =	3.00	min	180	sec	Time
	SWL =	0.53	ft	16.2	ст	Static water level before slug test
	TD =	23.24	ft	708.4		Total depth of well
	Le =	4.80	ŕt	146.3	cm	Length of screen (Le=Lw if SWL is within screen interval)
	H =	-56.00	ft	1706.9		Saturated aquifer thickness
	Rw =	0.38	ft	11.4	ст	Radial distance between undisturbed aquifer and well center
1	Rc =	0.08	ft	2.5	cm	Actual casing inside radius
l.						
	n =	0.00		0.00		Porosity of sand pack ($n = "0"$ if SWL above screen interval)
	Rc.t =	0.08	ft	2.5		Theoretical casing radius (if SWL is within screen interval)
	Lw =	22.71	ft	692.2		Total depth of water in well
	Le/Rw =	12.8		12.8		Function of dimensionless coefficients
	A =	1.9		1.9		Dimensionless coefficient
	8 =	0.3		0.3		Dimensionless coefficient
	C =	1.4		1.4	(Dimensionless coefficient
	lf Lw <h< td=""><td>Ln(Re/Rw</td><td>·) =</td><td>1.930</td><td></td><td>K= 8.37E-05 cm/sec K= 1.65E-04 ft/min</td></h<>	Ln(Re/Rw	·) =	1.930		K= 8.37E-05 cm/sec K= 1.65E-04 ft/min
	If Lw=H	Ln(Re/Rw		2.665		K= 1.15E-04 cm/sec K= 2.27E-04 ft/min

.

. .

COMMENTS:

.

Ę

ł

HYDRAULIC CONDUCTIVITY CALCULATION

Clark Refining & Marketing, Inc. Station #646 PROJECT NUMBER C01-7-0011 MW-14 SLUG-OUT

BOUWER AND RICE METHOD

(1976, 1989)

VARIABLES

:

н =	1708.9	cm	Saturated Aquifer Thickness
Rc ≃	2.5	cm ·	Radius of Well Casing
R₩ ≖	11.4	cm	Radius of Well and Sand Pack
Le ⇒	146.3	cm	Screen Length
Lw ≃	692.2	cm	Depth of Water to Bottom of Casing
Yo ≖	45.7	cm	Graph Variable
Yt≃	32.0	cm	Graph Variable
t =	180	sec	Graph Variable
A =	1.9		Interpreted Constant
8 34	0.3		Interpreted Constant

HYDRAULIC CONDUCTIVITY 🛥

8.37E-05 cm/sec

Assumption: Saturated aquifer thickness measurement for hydraulic conductivity calculation is estimated at 33 feet below ground surface. Data taken from well log for Osage Park monitoring well, Wauconda, IL.

	HYDRA	ULIC CO	OND	UCTIVI	TY (E	ROUWER AND RICE METHOD
<u> </u>	<u></u>	: C01-7-00	<u></u>			Well No: MW-16
Proje	ct Name:	: Clark Ref	Ining	& Marketi	ng, Inc	. Slug-in/Slug-out: SLUG-OUT
	Location	Station #6	546			Test Date: 9/24/97
						Test By: DPO
Ала	lyzed By:	DPO			Dat	ta Checked By: DPo Analysis Checked By:
Алаіу	sis Date:	9/24/97				Check Date: [1-13-17] Check Date:
				<u></u>		Description
Vari	able Yo =	Eng_ U	ftt.	S.I. U 36,6		Drawdown at time "0"
	Yt =	0.600	ft	18.3		Drawdown at time "t"
	t =	22.00	min	1320		Time
	SWL =	5.86	ft	178.6	cm	Static water level before slug test
	TD =	22.86	ft	696.8		Total depth of well
	Le =	4.80	ft	146.3	cm	Length of screen (Le=Lw if SWL is within screen interval)
	Н =	27.14	ft	827.2	cm	Saturated aquifer thickness
	Rw =	0.38	ft	11.4	cm	Radial distance between undisturbed aquifer and well center
	Rc =	0.08	ft	2.5	cm	Actual casing inside radius
	n =	0.00		0.00		Porosity of sand pack ($n = "0"$ if SWL above screen interval)
	Rc.t =	0.08	ft	2.5		Theoretical casing radius (if SWL is within screen interval)
	Lw =	17.00	ft	518.2		Total depth of water in well
Le	/Rw =	12.8		12.8	1	Function of dimensionless coefficients
	A =	1.9		1.9		Dimensionless coefficient
	8 =	0.3		0.3	(Dimensionless coefficient
	C =	1.4		1.4		Dimensionless coefficient
lf Lw<	<h< td=""><td>Ln(Re/Rw</td><td>/) =</td><td>1.955</td><td></td><td>K= 2.25E-05 cm/sec K= 4.42E-05 ft/min</td></h<>	Ln(Re/Rw	/) =	1.955		K= 2.25E-05 cm/sec K= 4.42E-05 ft/min
If Lw=		Ln(Re/Rw		2.528		K= 2.90E-05 cm/sec K= 5.71E-05 ft/min

COMMENTS:

ì

HYDRAULIC CONDUCTIVITY CALCULATION

...

Clark Refining & Marketing, Inc. Station #646

PROJECT NUMBER C01-7-0011 MW-16

SLUG-OUT

BOUWER AND RICE METHOD

(1976, 1989)

VARIA	BLES		
Н -	827.2	cm	Saturated Aquifer Thickness
Ac =	2.5	спi	Radius of Well Casing
Rw =	11.4	ст	Radius of Well and Sand Pack
La =	145.3	cm	Screen Length
Lw =	518.2	cm	Depth of Water to Bottom of Casing
Yo =	36.6	cm	Graph Variable
Yt 🛥	18.3	ст	Graph Variable
t≕	1320	50C	Graph Variable
A =	1.9		Interpreted Constant
8 =	0.3		Interpreted Constant

HYDRAULIC CONDUCTIVITY = 2.25E-05 cm/sec

Assumption: Saturated aquifer thickness measurement for hydraulic conductivity calculation is estimated at 33 feet below ground surface. Data taken from well log for Osage Park monitoring well, Wauconda, IL.

Figure 4: SLÜG TEST DATA Well MW-4 Slug Out

;

 Time
 Y

 0
 0.91

 4
 0.074

. 1

. (

ć

ŗ

Prepared/Date:_

;

 Time
 Y

 0
 0.67

 1
 0.022

i.

i i

1 1 1

Prepared/Date:__

1

.

:

į

٩_.

(

3 1.05

Prepared/Date:_

Figure 4: SLUG TEST DATA
Well MW-16
Slug Out

<u>Time</u>	Y
0	1.2
22	0.6

APPENDIX I

SSL PRINTOUTS - SOIL LEACHING

Soil Component of the Groundwater Ingestion Exposure Route

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Constituent:

BTEX and MTBE

Equation S17

$$C_{w} \cdot \left[K_{d} + \frac{\left(\theta_{w} + \theta_{a} \cdot H' \right)}{\rho_{b}} \right]$$

Where:

SCGIER RO		remediation objective			unknown	mg/kg
C_w	==	target soil leachate concentration (Equation S18)				_
			Benzene	=	0.100	mg/L
			Toluene	=	20.000	mg/L
		Ethy	benzene	=	14.000	mg/L
		Total	Xylenes		200.000	mg/L
			MTBE		1.400	mg/L
K _d	=	soil-water partition coefficient (Equation S19)				
			Benzene	=	0.458	cm ³ /g
			Toluene	=	1.414	cm ³ /g
		Ethyl	benzene		2.821	cm ³ /g
		Total	Xylenes	=	2.020	cm ³ /g
			MTBE	=	0.089	cm ³ /g
θ_{w}		water-filled soil porosity (Equation S20)		=	0.308	L_{water}/L_{soil}
θ_a		air-filled soil porosity (Equation S21)		=	0.036	L _{air} /L _{soil}
0 _а Н'	=	Henry's Law Constant (default - chemical specific)				
11			Benzene	=	0.228	unitless
			Toluene		0.272	unitless
		Ethyl	benzene		0.323	unitless
		Total	Xylenes	=	0.25	unitless
			MTBE	=	0.0241	unitless
$ ho$ $_b$	=	dry soil bulk density (Table 1)		==	1.739605	g/cm ³

Therefore, solving for the SCGIER RO for benzene =	0.064	mg/kg
solving for the SCGIER RO for toluene =	31.939	mg/kg
solving for the SCGIER RO for ethylbenzene =	42.061	mg/kg
solving for the SCGIER RO for total xylenes =	440.507	mg/kg
solving for the SCGIER RO for MTBE =	0.374	mg/kg

Target Soil Leachate Concentration

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Constituent:

BTEX and MTBE

Equation S18

$$G_w = DF_{\bullet}GW_{bj}$$

Where:

C_w DF	 target soil leachate concentration (Equation S18) dilution factor (20 or Equation S22, whichever is greater) 	=	unknown 20.00	mg/L unitless
GW_{obj}	= groundwater remediation objective (Tier 1, Class I GRO - chemical specif	c)		
G // 00j	Benzene		0.005	mg/L
	Toluene	=	1	mg/L
	Ethylbenzene		0.7	mg/L
	Total Xylenes		10	mg/L
	MTBE		0.07	mg/L
				-

Therefore, solving for C_{w} for benzene =	0.100	mg/L
solving for C_w for toluene =	20.000	mg/L
solving for C_{w} for ethylbenzene =	14.000	mg/L
solving for C_w for total xylenes =	200.000	mg/L
solving for C_{yy} for MTBE =	1.400	mg/L

Soil-Water Partition Coefficient

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

$$K_{d} = K_{oc} \bullet f_{oc}$$

Where:

Equation S19

K_d	=	Soil-water partition coefficient	=	unknown	cm ³ /g	
K _{oc}		Organic carbon partition coefficient (default - chemical specific)				
		Benzene	_	58.9	L/kg	
		Toluene	=	182	L/kg	
		Ethylbenzene		363	L/kg	
		Total Xylenes	=	260	L/kg	
		MTBE	=	11.5	L/kg	
f_{oc}		organic carbon content of soil (Table 1)	=	0.00777	g/g	

Therefore, solving for K_d for Benzene	=	0.458	cm ³ /g
solving for K_d for Toluene		1.414	cm ³ /g
solving for K_d for Ethylbenzene	202	2.821	cm ³ /g
solving for K_d for Total Xylenes		2.020	cm ³ /g
solving for K_d for MTBE	<u></u>	0.089	cm ³ /g
Water-Filled Soil Porosity

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

$$\theta_{w} = \eta \cdot \left(\frac{I}{K_{s}}\right)^{\frac{1}{(2b+3)}}$$

Where:

Equation S20

θ_{w}		water-filled soil porosity	=	unknown	L_{water}/L_{soil}
n	=	total soil porosity (Table 1)	=	0.344	L_{pore}/L_{soil}
Ī		infiltration rate (default)		0.3	m/yr
K_s	=	saturated hydraulic conductivity (default)	_	5	m/yr
1/(2b+3)		exponential (default)	=	0.039	unitless
		1			

Therefore, solving for θ_{w} =

 $0.308 \qquad L_{water}/L_{soil}$

Air-Filled Soil Porosity

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

$$\theta_a = \eta - \theta_w$$

Where:

θ_a	=	air-filled soil porosity	=	unknown	L _{air} /L _{soil}
η	=	total soil porosity (Table 1)	=	0.344	L _{pore} /L _{soil}
θ_w	=	water-filled soil porosity (Equation S20)		0.308	L_{water}/L_{soil}

Therefore, solving for $\theta_a = 0.036$ L_{air}/L_{soil}

Dilution Factor

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

$$DF = 1 + \frac{K \bullet i \bullet d}{I \bullet L}$$

Where:

Equation S22

DF	_	dilution factor		unknown	unitless
Κ		aquifer hydraulic conductivity (Appendix H)	=	2,084.53	m/yr
i	=	hydraulic gradient (Appendix H)	=	0.0157	
d		mixing zone depth (Equation S25)	=	5.842	m
Ι		infiltration rate (default)		0.3	m/yr
L	=	source length parallel to groundwater flow (Figure 4)	=	50.90	m

Therefore, solving for DF = 13.52 unitless

Please note that since the calculated DF is less than 20, a value of 20 is utilized in Equation S18.

Estimation of Mixing Zone Depth

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation S25

$$d = (0.0112 \cdot L^2)^{0.5} + d_a \left[1 - \exp \frac{(-L \cdot I)}{(K \cdot i \cdot d_a)} \right]$$

Where:

d		mixing zone depth	=	unknown	m
L	=	source length parallel to groundwater flow (Figure 4)	=	50.90	m
d _a	=	aquifer thickness (site-specific)	=	9.2	m
Ι	=	infiltration rate (default)	=	0.3	m/yr
K	=	aquifer hydraulic conductivity (Appendix H)		2,084.53	m/yr
i	=	hydraulic gradient (Appendix H)		0.0157	m/m

Therefore, solving for d = 5.842 m

APPENDIX J

REMEDIATION SYSTEM QUOTES AND EQUIPMENT AND TECHNICAL SPECIFICATIONS

SCHRADER ENVIRONMENTAL SERVICES, INC.

212 S PINE RIVER ITHACA, MI 48847 OFFICE (989) 875-6500 FAX (989) 875-8880

FAX PROPOSAL PROPOSAL NUMBER CS040609-1R1 April 17, 2009 DATE: ATTN: MARCOS CZAKO 630-740-5291 PHONE: TO: Tri Cor Environmental FAX: 630-520-9976 1800 W. Hawthorne Lane Suite P W. Chicago, IL DPE Pilot Test equipment RE: SITE: Wanaconda, Illinois Total: Quantity: Item cost: Item: Description: **Rental of the following equipment:** SES Dual phase extraction system \$3,595.00 1-6 Months 1 Per Month 6 Month Minimum Includes: **Enclosed Trailer** Rental - 8' X 14' enclosed/insulated dual axle 7000# GVW trailer \$3,395.00 - Double rear entry and single side entry lockable doors 6+ Months - Inside height of trailer is 92" Per month - (2) EXP lights, w/switch, EXP electric heater in equipment room - Manual inlet louver and 12" EXP exhaust fan included SVE Skid Includes: - Roots URAI 36 Positive Displacement Blower - 70 ACFM @12" HG - Inlet particulate filter Vacuum & temperature gauges - Inlet Silencer included (4) Well Inlet Manifold Includes: (note: additional wells can be added) - (4) 2" dia. male camlock well inlet connections - Clear sight tubes w/ball valves - Vacuum gauges & sample ports - (1) 2" dia. ERDCO flow meter **Moisture Separation Tank** included Includes: - Approx. 80 gallon capacity - 2" dia. inlet & outlet connections - Low, high, high high level control float switches for transfer pump operation - Sight glass Section Section - 6" dia. clean out port - 1" dia. FNPT manual drain w/valve - 1/2 hp EXP transfer pump

www.RemediationEquipment.com

	Air Stripper Stat 15 (or Equal) Per Request Designed Flow to system is 10 gpm - 3 Stainless Steel Trays with demister - Stainless Steel Sump - Blower with 5 hp 230/3ph/60 VAC EXP - Manual Air Flow Balancing Damper - High level alarm - Low Pressure Alarm Switch - Inlet Filter - Discharge Pump 3/4 HP 230/3/60 VAC EXP - Auto Pump Out Provisions	included
	 10 gpm fiberglass Oil/water separator Includes: Steel stand for separator 55 gallon product drum with high level system shutdown switch 150 gallon Polyethylene transfer tank with (3) EXP liquid level switches for transfer pump operation 1/2 HP EXP 230/3/60 VAC Centrifical Transfer Pump 8x30 bag filter housing 100 micron bag filters 8" X 30" 	included \$7.50/ea. As Required
	Control Panel Package Includes: - NEMA 4 rated enclosure - Hand/off auto switches w/faults lights - Low, high, high high level control relays - 7 KVA transformer - Baseboard heater in control room	included
2	SES's technician for on-site start up assistance Plus Per-Diem and Travel Expenses	\$875.00/ day plus expenses
3	Delivery to Wanaconda, Illinois	\$1,425.00
4	Pick Up after Rental Period from Wanaconda, Illinois	\$1,425.00

Note: On site power requirement is 230/3/60 VAC sized at 100 amps

Note: Wells, Field Connections, Installation and Permits are by others at this time

DELIVERY: 4-5 Weeks after receipt of a written purchase order, pending equipment availability.

RENTAL TERMS: First and last months rent due with order plus shipping and a signed rental contract. Monthly rent due 1st of each month.

MODIFICATION OF RENTAL EQUIPMENT: Any modification (removal or replacement) either mechanical or electrical for site specific applications that require SES re-work before or after the rental period will be billed. 11/2% per month finance charge will apply to any invoices over 30 days.

The above pricing does not include any applicable sales tax.

ACCEPTANCE:

Accepted by:	Company:
Printed Name & Title:	

Purchase Order #:

Date:

Sincerely, Schrader Environmental Services, Inc.

Charles Sumrack Operations Manager

Soil and Groundwater Remediation Equipment

May 11, 2009

Mr. Marcos Czako TriCore Environmental, LLC 1800 West Hawthorne Lane, Suite P West Chicago, IL 60185 630-520-9976 micako@comcast.net

Subject:

DPE Trailer Shivam energy Wauconda, IL BISCO Proposal No. 10523

Dear Mr. Czako,

BISCO Environmental is pleased to provide the following proposal to purchase a turnkey remediation system based on the components, materials and design described herein. It is our objective to provide the most cost effective system design to meet the performance specifications and achieve desired cleanup requirements. The proposed enclosed trailer system would have (1) one Class I Division II rated equipment room.

BISCO will supply piping, fittings, components, instrumentation and equipment of suitable materials, design and methods in accordance with generally acceptable practices within the soil and groundwater remediation industry. The system will be pre-piped, pre-wired, and pre-tested to insure a minimum amount of field connections upon installation of the system. Primary system components are described below for your review and consideration:

DPE Inlet Manifold:

- (1) 4" SCH80 PVC or aluminum header with (11) 2" SCH80 PVC legs
- (11) 2" Brass gate valves
- (11) 2" Swing check valves
- (11) Sample ports
- (11) Vacuum indicators 0-30" Hg
- (11) Inline flow meters 2.0" inlet/outlet

Air/water moisture separator:

- 80-gallon vertical steel air/water separator
- 2" Tangential inlet and out with integral demister tower and pad
- 4" Flanged bottom clean out port
- 1" Manual drain port with ball valve and male cam lock fitting
- 2" stainless steel stem mounted 3-position float switch assembly in a clear site tube
- Progressive cavity 1.0 HP 240/1/60 XP motor with recirculation line
- Pump inlet ball valve and wye stainer
- Pump discharge gate valve, check valve, pressure gauge and sample port

135 Robert Treat Paine Drive, Taunton, MA 02780 Ph: (508) 738-5101 Fax: (508) 738-5022 www.biscoenv.com

2 of 7 5/11/2009

DPE Pump (~195 ACFM @ 18" Hg Vacuum at the pump inlet):

- 2" SCH80 PVC inlet piping
- Induced VGAC manifold with (3) 3" SCH80 PVC butterfly valves
- Induced VGAC manifold terminations at trailer exterior with 2" Part F cam locks
- 1" Manual dilution air gate valve with filter silencer at trailer exterior wall
- 2" Inline air filter with differential pressure gauge
- Inlet flow element and indicator gauge
- Inlet low vacuum switch
- Inlet temperature gauge
- Influent vacuum gauge
- Inlet vacuum relief valve
- Busch MM1322AV rotary claw vacuum pump
- 8.7HP 240/3/60 TEFC motor
- Discharge temperature gauge
- 2" Temperature appropriate discharge piping and stack with rain cap at trailer exterior

Vapor Phase Carbon

- (2) Tetrasolv Filtration VFV-1000 vacuum rated VGAC filters
- 1000 Pounds of reactivated GAC each filter
- 3" NPT inlet/outlet with 2" part F cam locks
- (3) 3' x 20' Flex hoses with part C cam locks on each end
- VGAC vessels ship loose for installation at the trailer exterior by others

Oil Water Separator:

- 20 GPM capacity
- Stainless steel construction
- 60 Gallon integral effluent holding tank
- External site gauge with 3-position level switch
- Centrifugal transfer pump 0.5HP 240/1/60 XP motor
- Discharge bag filter housing Aluminum construction, 50 GPM max, 10 Filter bags
- Inlet and outlet unions
- 1/4 ' Pressure bleed valve at top of housing
- Pre and post ball valves and pressure gauges
- 55 Gallon product drum with LSH (Shipped loose for installation by others at trailer exterior)

Air Stripper:

- BISCO/NEEP Shallow Tray Model 2331-P HDPE Construction
- 2" clear sump sight gauge
- Sump liquid low and high level switches
- Air Stripper blower to handle 300 CFM @ 18"w.c. back pressure
- 5HP 230/1/60 XP motor
- Blower low pressure switch
- Blower control butterfly valve
- Blower interconnecting piping
- Centrifugal transfer pump 0.5HP 240/1/60 XP motor
- Pump inlet ball valve and wye strainer
- Pump discharge check valve, gate valve, pressure gauge, and sample port
- Discharge local indicating flow totalizer

System Control Panel (Relay Based):

- NEMA 4 698a rated dead front lockable door in door enclosure
- 240/1/60 electrical service
- (1) 20HP VFD for DPE pump motor phase conversion
- 120 VAC control voltage transformer
- (4) Channel auto dialer
- External emergency stop button
- Standard motor starters with thermal overload protection as needed
- · Circuit breakers for all inductive and resistive loads, motors, lights,
- Interlocks as required for proper system operation
- Illuminated hand-off-auto selector switches
- Hour meters for the DPE pump motor
- Alarm lights with manual reset as required for proper system function
- Intrinsically safe control relays and wiring as necessary
- Through door main disconnect with primary and branch circuit protection
- Reset button to clear fault conditions
- Panel mounted at trailer exterior nose

Enclosed Trailer:

- Interior trailer dimensions- 8' W x 18' L x 7' 6" H
- Non slip interior floor covering
- Trailer interior temperature switch
- Floor sump with Level switch
- Tandem-axle with electric brakes
- Extended tongue to allow for turning radius with nose mounted MCP
- Double opening rear cargo doors
- Four (4) Jack-stands (Supplied loose)
- Insulated floor walls and ceiling
- Class I Div II interior heater 3.6 kW
- Door mounted inlet air vents
- Emergency (E-Stop) push button (located in trailer)
- Three (3) Class I Div II interior light fixtures
- Class I Div II 20" pressure fan (thermostatically controlled)
- System to be fully assembled, pre-piped, and pre-wired per NATIONAL ELECTRIC CODE, ARTICLE 500, CLASS 1, DIV. 2, HAZARDOUS LOCATIONS.

System Pricing

The DPE trailer as described above		\$ 96,500.00
Shipping		\$ 2,500.00
	Total	\$ 99,000.00

System Component Price Breakdown

DPE Manifold	\$ 7,612.00
Moisture Separator System	\$ 4,009.00
DPE System	\$ 14,612.00
Oil/Water Separator System	\$ 8,620.00
Air Stripping System	\$ 7,117.00
Vapor Phase Carbon	\$ 7,150.00
System Control Panel	\$ 7,724.00
Trailer	\$ 22,156.00
Labor	\$ 17,500.00

Assumptions, Clarifications and Exceptions

- *BISCO* will supply and install piping, fittings, components, instrumentation and equipment of suitable materials, design and methods in accordance with generally acceptable practices within the soil and groundwater remediation industry.
- All final invoices will be issued for equipment upon notice of readiness to ship.
- Subject to credit approval, payment terms are one third due with written order, one third due prior to shipment or readiness to ship, one third due net 30 days from shipment or readiness to ship.
- Issuance of a purchase order or notice to proceed constitutes the acceptance of BISCO's terms and conditions. In the event of a conflict with any customer terms, BISCO's terms shall take precedence
- Warranty period begins upon notification that the system/equipment is ready to ship.
- BISCO is not responsible for any discrepancies between the written RFP documents and the RFP drawings. Pricing is limited to only those items describe herein. Accidental errors or omissions in interpreting the bid documents may require additional costs.
- Pricing is based on the SVE and Air Sparge pumps and motors specified. No additional
 pressure loss calculations have been performed. The actual mechanical installation of the
 system may require pipe, fittings or instruments that impact the operational flows, vacuums
 and pressures.
- If applicable, pricing is based on the telemetry and or PLC systems specified. If additional I/O capacity is required to meet desired control capability, increased cost may be required.
- Sizing and costs for the equipment containers, sheds, trailers or skids may change based upon engineered and scaled drawings during the submittal process.
- Every effort will be made to locate flow sensors/meters in desired locations. However, installation per manufacturer's specifications may be influenced by enclosure or skid sizing and/or system operating temperatures or pressures.

- Pricing is based on uninterrupted system construction at BISCO's manufacturing facility. Customer requests to stop, delay, postpone or interrupt completion of a system already in the manufacturing process may result in additional handling and set up charges.
- If a customer or consultant operational witness test is required prior to shipment, the test shall be scheduled immediately following BISCO's functional test of the system. Delays in performance of the customer witness test may result in additional handling and set up charges.
- If customer is unready to accept shipment at time of notification to ship, customer will advise BISCO in writing of the reason for delay, anticipated readiness date, and acknowledge ownership of the equipment as of the notification to ship date. BISCO will store equipment for a period of 30 days free of charge. Customer will be invoiced monthly storage charges @ a rate of \$ 5.00/ square foot / month, plus any applicable one time mobilization charge to relocate equipment to a storage facility other than BISCO Environmental.
- No permitting services or costs are included.
- On-site construction services, on-site ancillary piping, or on-site electrical work are not provided as a part of this proposal
- No PE stamped structural drawings, wind load calculations, or tie down plans for system enclosures are included. They can be made available for an additional cost on a T&M basis if requested.
- Equipment offloading services at the destination or job site have not been included.
- Delivery is ~8-10 weeks after submittal approval. Submittals will be provided within 2-3 weeks of receipt by BISCO of a completed purchase order confirmation (POC) form.
- Prior to system fabrication, we will provide a submittals package for your review and approval. Submittals can include a system P&ID, layout drawing, electrical distribution diagram, control panel drawings, and manufacturer's catalog cut sheets for the system's major components. Once submittals are approved, the components will be ordered and the system will be fabricated.
- BISCO will provide an O&M Manual (one copy and one electronic copy (CD) that consists of system drawings and manufacturer's related component information. Any additional copies, or informational/operational plans, schedules or procedures may require additional cost.
- O&M Manuals are shipped approximately 1-2 weeks after final system testing, programming and completion of as built drawings.
- Pursuant to NEC Article 409; BISCO Environmental, Inc. provides U.L. Listed industrial control panels manufactured with short circuit current ratings (SCCR) of 10kA as standard product. The need for an alternate SCCR must be communicated in writing to BISCO Environmental, Inc. prior to placing any order.
- Not having any ambient sound level data regarding the site, we cannot guarantee
 meeting any sound requirement if specified. We can/have included interior sound blankets,
 sound ducting hoods and insulation, so it is quite possible that the sound levels from the
 systems will fall within acceptable levels.

- Steel shipping containers are not NFPA certified with fire wall ratings. They may not meet national fire code requirements.
- Due to the volatility of fuel costs, transportation quotes/estimates older than two weeks will be re-quoted and may result in additional costs.

STANDARD TERMS AND CONDITIONS

- **AGREEMENT:** This offer may only be accepted on, and is expressly limited to acceptance of the terms described herein and acceptance by the buyer shall be deemed as acceptance of all of the terms.
- **Assumptions:** BISCO Environmental assumes the information provided by the buyer is the full extent of the information necessary to determine the scope of the project. It is the responsibility of the buyer to provide all information necessary to prepare the proposal to BISCO Environmental. In the preparation of the proposal, BISCO Environmental cannot consider any information germane to the project not provided by the buyer. This includes but is not limited to: local and federal applicable codes, government regulations, site conditions, project specifications, available electric power, hazardous location classifications, etc. Any errors or omissions in the proposal resulting from unidentified legal or technical requirements are outside the scope of this proposal, and BISCO Environmental will not be responsible for them.
- **MODIFICATION:** No changes shall be made in the quotation or purchase order unless agreed to by the seller in writing. This order is not subject to deviations of customer's confirming purchase order.
- **PRICING:** Subject to credit approval, Net 30 days, or as stated in the body of the proposal Terms stated within the proposal take precedence. No retainers whatsoever will be allowed regardless of agreements between purchaser and ultimate owner or user.
- **TAXES:** The quoted price does not include sales, use, excise or similar taxes except as noted in the proposal. If sales taxes are quoted as a component of the price, such tax amounts have ben calculated based on representations by the buyer. The buyer retains responsibility for any sales, use, excise or similar not expressly outlined in the proposal and paid by BISCO Environmental on the buyers behalf.
- **F.O.B.** All items on this proposal will be shipped F.O.B. BISCO or F.O.B origin point if drop shipped. BISCO Environmental shall not be responsible nor liable for any damage caused by the freight carrier. Acceptance of the freight by carrier is acknowledgment that containers or method of shipping was acceptable when picked up.
- **VALIDITY:** This proposal will be valid for thirty (30) days unless otherwise stated in the proposal.
- **CANCELLATION:** Buyer may cancel this agreement only upon payment of reasonable cancellation charges which shall take into account expenses incurred and commitments made by BISCO Environmental.

7 of 7 5/11/2009

WARRANTY: All products not manufactured by BISCO Environmental carry the original manufacturer's warranty. Copies are available on request.

BISCO Environmental warrants its packaged and manufactured equipment against any defect in material or workmanship, under normal use and storage for a period of twelve (12) months from date of manufacture. In the event that products are found to be defective within the warranty period, BISCO Environmental's sole obligation and remedy shall be the furnishing of replacements for any defective parts, and such replacement parts shall be furnished but not installed by BISCO Environmental. <u>BISCO ENVIRONMENTAL WILL NOT BE LIABLE FOR SPECIAL OR CONSEQUENTIAL DAMAGES IN ANY CLAIM SUIT OR PROCEEDINGS ARISING UNDER WARRANTY. NOR WILL BISCO ENVIRONMENTAL ACCEPT ANY LIABILITY FOR CLAIMS For LABOR, LOSS OFF PROFIT, <u>REPAIRS OR OTHER EXPENSES INCIDENTAL TO REPLACEMENT</u>. The product warranty expressed above is our only warranty and may not be verbally changed or modified by any representative of BISCO Environmental. All freight costs incurred in shipping parts to or from BISCO Environmental or to the manufacturer if necessary are at the expense of the customer.</u>

BISCO Environmental expressly disclaims any warranties, expressed or implied, including any warranty of merchantability or fitness for a particular purpose or any warranty arising from a course of dealing or usage of trade. Except to the extent required by applicable law, BISCO Environmental shall not be liable, in tort, contract or otherwise, for any loss or damage, whether direct, consequential or incidental, of any person or entity arising in connections with the equipment.

RETURNS: All returns are subject to a 25% restocking fee. All special orders are non-returnable. All returnable items must be in new, unused, resalable condition and in original packaging. All freight costs incurred due to returns are at the expense of the customer. All material being returned for warranty evaluation is subject to labor charges if found to be out of warranty. Shop labor rate is \$75.00 per hour.

If you have any questions or concerns please feel free to give me a call.

Sincerely,

John Slesinski Phone 508-738-5103 E-mail: jslesinski@biscoenv.com CC: Leo McDonough

APPENDIX K

MASS LOADING CALCULATIONS AND RADIUS OF INFLUENCE GRAPHS

Mass Loading - Unsaturated Soil

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation Total Mass of Contaminants = (Average Total VOC Concentration (ppm)/1,000,000) * (Total Volume of Contaminated Mass (yd³) * Dry Bulk Density (lbs/ft³) * (27 ft³/ 1 yd³)

Conversions

1 yd^3 = 27 ft^3

Concentration at Point Source = 5,142.50 ppm The VOC concentration at the point source was determined by calculating a ratio of the BTEX and MTBE concentrations to the PID reading for the sample submitted for laboratory analysis from SB-44. The ratio was then utilized to determine the estimated BTEX and MTBE concentrations in the unsaturated soil for the point source. The BTEX and MTBE concentrations were then averaged and multiplied by 5 lbs VOCs per lb of BTEX and MTBE . BTEX and MTBE concentrations are summarized in Table 7.

Concentration of Remaining Soil Plume = 785.25 ppm

The VOC concentration in the remaining soil plume was determined by calculating a ratio of the BTEX and MTBE concentrations to the PID reading for the sample submitted for laboratory analysis from each boring. The ratio was then utilized to determine the estimated BTEX and MTBE concentrations in the unsaturated soil for that boring. The BTEX and MTBE concentrations were then averaged and multiplied by 5 lbs VOCs per lb of BTEX and MTBE . BTEX and MTBE concentrations for the soil samples collected are summarized in Table 7.

Volume of Point Source Contaminated Mass = 11.11 yd³ The point source volume was estimated by determining the area of the point source (10 feet by 10 feet) and an average thickness of the soil contamination above the water table at this source area (3 feet). The point source area is approximately 1% of the total contaminated plume volume (1,113 yd³). The contaminated plume is illustrated on Figure 5.

Volume of Contaminated Mass in Remaining Soil Plume = 1,101.89 yd³ The remaining soil plume volume was estimated by determining the volume of the remaining soil plume (volume of the point source (11.10 yd³) subtracted from the volume of the total soil plume. The total soil plume volume was estimated by determining the total area of the soil plume (10,017 feet²)) and an average thickness of the soil contamination in the remaining soil plume above the water table (3 feet). The remaining contaminated plume area is approximately 99% of the total contaminated plume volume. The contaminated plume is illustrated on Figure 5.

Average Total VOC Concentration = 828.82 ppm By utilizing a ratio of the volume of contaminated masses to the total volume of contaminated mass and the total VOC concentrations, an average total VOC concentration throughout the soil plume was estimated. This average was then utilized in the equation above to calculate the total mass of contaminants.

Dry Bulk Density	=	108.6	lbs/ft ³
The dry bulk density is summarized in Table 1.	-		
Total Mass of Contaminants	=	2.704.9	lbs

Mass Loading - Saturated Soil

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

Equation

Total Mass of Contaminants = (Highest Average Concentration (ppm)/1,000,000) * (Volume of Contaminated Mass (yd^3) * Dry Bulk Density (lbs/ft^3) * (27 ft³/ 1 yd^3)

ft³

Conversions

 $1 yd^3 = 27$

Average Concentration = 361.39 ppm The VOC concentration in the saturated soil was determined by calculating a ratio of the BTEX and MTBE concentrations to the PID reading for the sample submitted for laboratory analysis from each boring. The ratio was then utilized to determine the estimated BTEX and MTBE concentrations in the soil below the water table for that boring. The BTEX and MTBE concentrations were then averaged and multiplied by 5 lbs VOCs per lb of BTEX and MTBE . BTEX and MTBE concentrations for the soil samples collected are summarized in Table 7.

Volume of Contaminated Mass=1,855.00 yd^3 The volume was estimated by determining the area of the contaminated soil plume(10,017 feet2) and an average thickness of the soil contamination below the watertable (5 feet).The contaminated plume is illustrated on Figure 5.

Dry Bulk Density = 108.6 lbs/ft³ The dry bulk density is summarized in Table 1.

Total Mass of Contaminants = 1,965.7 lbs

Mass Loading - Groundwater

Shivam Energy, Inc. 399 West Liberty Street Wauconda, Lake County, Illinois 60084 IEMA Incident Nos. 892744 and 903199

1

Equation

Total Mass of Contaminants = (Highest Average Concentration (ppm)/1,000,000) * (Volume of Contaminated Mass (yd³) * Soil Porosity (%) * Density of Water (lbs/ft³) * (27 ft³/1 yd³)

27

ft³

Conversions

Highest Average Concentration = 1.70 ppm The average BTEX and MTBE concentration from MW-26, RW-1, and MW-26 (0.34

vd³

ppm) was multiplied by 5 lbs VOCs per lb of BTEX and MTBE. These wells are located within the contaminated groundwater plume referenced below in the Volume of Contaminated Mass description. BTEX and MTBE concentrations are summarized in Table 6.

Volume of Contaminated Mass = 5,820.56 yd³ The volume was estimated by determining the area of the contaminated groundwater plume surrounding the site (31,431 feet²), and utilizing the depths in the soil borings at which saturated conditions were present and PID measurements showed vertical delineation to determine a treatment thickness (5 feet). The contaminated plume is illustrated on Figure 2. The contaminated groundwater plume present north of the site in Osage Park will be addressed once MW-33 and MW-34 are installed to evaluate the groundwater concentrations at B-4c and B-5b. This information will be provided in an Amended CAP.

Total Mass of Contaminants	ancan Kanaji	5.7	lbs
Density of Water	=	62.43	lbs/ft ³
The total soil porosity is summarized in	ו Table	e 1.	
Total Soil Porosity	=	34.4	%

Estimated Radius of Influence Average Vacuum 12.68 in. Hg (173 in. H₂O)

Effect on Groundwater Elevations During Pilot Test